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SUMMARY

Compared to numerical analysis, symbolic and algebraic manipulation is unfamiliar to

people in the research field. As its name implies, symbolic and algebraic manipulation can be

simply interpreted as a computerized operation which can retain symbols throughout

computations and express results in terms of symbolic forms. For example, the coefficients a,

b, and c in the quadratic polynomial equation ax2+bx+c=O do not need to be known in order to

find its roots. The equation itself can be directly input to a computer and the results will be

(-b + 4bZ-4ac) , (-b -4b z-4ac)

x_= 2a and x:.- 2a

If the numerical values are required, three coefficients can be specified and solutions will be

expressed as numbers.

From the example above, at least two unique characteristics of symbolic and algebraic

manipulation can be observed. First unlike numerical analysis, the solutions from symbolic and

algebraic manipulation are exact and therefore no round-off error is introduced. Second, the

solutions are the same as those derived by hand. Therefore the extension of human capability to

handle more sophisticated fomulations becomes feasible by computer.

In the first chapter of this report, the history of symbolic and algebraic manipulation is

introduced. The sencond chapter chronologically reviews the literature regarding the application

of symbolic and algebraic manipulation in the engineering field. The capabilities of symbolic

and algebraic manipulators are demonstrated in chapter three by selected examples. Chapters

four through six demonstrate applications of symbolic and algebraic manipulation. Chapter

four describes the automatic formulation of applied mechanics problems, chapter five covers

the materially nonlinear, rigid-plastic ring compression problem, and chapter six discusses

plate problems. The final chapter summarizes the overall conclusions of this report.

It is well known that there are some difficuilties existing in the symbolic and algebraic

field. The report proposes a remedy to avoid the difficulties and successfully accomplishes the

applications. Due to this breakthrough, the solution of some previously insolvable problems

become available. In addition, one of the advantages found in this research is believed to be

crucial for improving the execution efficiency of numerical programs.



CHAPTER I

HISTORY OF SYMBOLIC AND ALGEBRAIC MANIPULATION

1.1 Introduction

Symbolic and Algebraic Manipulation (abbreviated as SAM) software is one of the new

products of modem technology for use with highly developed digital computers. Traditionalists

might say that SAM software is a misuse of modern computers. This is true if the viewpoint is

adopted that a computer is a machine which only counts numbers. This viewpoint, however,

severely limits the emerging artificial intelligence capabilities of computers. For instance, in

addition to numbers, there are many symbols which define appropriate mathematical relations

in a calculus book. Can we ask a computer to do these analytical derivations for us? This is a

great question which finally led to the birth of SAM and added "soul" to the computer, to make

it think more like a human brain. This idea, which originated before 1953, has had an impact

on a variety of fields, such as science, industry and education. Therefore, although its history

is not as long as that of the classical sciences, its impact has been so large that a record of its

history is deserving.

At the initiation of this dissertation effort in 1986, there were already a number of SAM

systems available on the market. Some of them were more than ten years old, such as

FORMAC, REDUCE and MACSYMA. Others were just being developed, such as muMATH

and MATHEMATICA. Ironically, most relevant documents either ignore the history of these

systems or just skim over them briefly. Only one book, written in 1969 by Jean E. Sammet

[1], includes historical details, however, it is too old to cover recent developments. Most of the

major systems used today have been produced since then. Therefore, it is necessary to collect,

rewrite, and update the history of the SAM systems. It is hoped that the interested researchers

will get a complete picture of the development of SAM systems. Through an understanding of

the history they will be able to grasp the direction of the field and devote themselves towards

making a further contribution. This is the ma.jor purpose of the chapter. It is much more

important than just knowing how to run the SAM systems.



The first ideafor usingcomputersto doSAM canbetracedbackto two mastertheses

publishedin 1953([2],[3]). Threeyearslater,whatis believedto bethe earliestSAM system,
calledPM, wasdevelopedat IBM [4]. Now therearemanySAM systemson themarket for

variouscomputers.Someof themaredesignedfor generalpurposeusage,while othershave
beendevelopedfor particularapplications.Generallyspeaking,theevolutionof symbolicand
algebraicmanipulationcanbeclassifiedintothreestages.Theyare:

1. The first generation(1953-1965)---softwareto appearin this generationwas PM,
ALGY, FORMAC,MATHLAB andALTRAN. Becauseof thelimitation of hardware

capacity, the systemsin this stagewere small in size and immature in content.
Therefore,mostof thembecameobsoleteor wererevised.

2. The2nd generation(1966-1975)---softwareto appearin this generationwasREDUCE

and MACSYMA. Thesesystemstook advantageof the improvementof hardware

memorycapacity.Theycontainmanybuilt-in functions,arelargeandarefor general
purposeusage.All of themrunon themainframe.

3. The 3rd generation(1976-present)---somerepresentativesof more recentsystemsare
muMATH, MATHEMATICA, and DERIVE. Unlike the systemsof the second

generation,thesystemsin thisgenerationaredesignedto runonmicrocomputers.This

has been possible due not only to the improvement of memory capacity in

microcomputers, but also due to the requirement of most users who just need quick

checks or moderate manipulations.

Details of the histories of the systems will be described in the following subsections

individually. For the sake of clarification, a summary is also included in Table 1.1.

1.2 History of SAM systems

1.2.1 PM

PM is believed to be the earliest computerized algebraic system in the world. It was

developed by George E. Collins at the IBM research center in Yorktown Heights, New York.

Although the first document was published in 1966 [4] its beginning dates back to 1956.

Written in assembly language for the IBM 701 computer, PM contained the subroutines for

addition, subtraction and multiplication of multiple-precision integers, and subroutines for

performing the same operations on multivariate polynomials with multiple-precision integer

coefficients. Between 1956 and 1966 PM was reprogrammed for the newer IBM computers



(e.g. 709, 7090 and 7094), and augmented to include new operations (such as integer god)

with various improvements (e.g. the incorporations of list processing and dynamic storage

allocation). In 1966 Dr. Collins became a professor of computer science at the University of

Wisconsin. With the aid of graduate students, the PM system was converted to the SAC-I

system in 1973. In spite of its eventual replacement, PM, as the first SAM system, was still

very significant in the field.

1.2.2 ALGY

Although ALGY has few functions, it was one of the earliest SAM systems in the

world. The developmental work was started at Western Development Lab-Philco Co. in Paio

Alto, California by Bernick, Callender and Sanford, around 1961 [5]. It was interactive and

allowed expressions written in a notation similar to FORTRAN as input, with some deviations.

For example, the $ was used instead of ** to represent exponentiation, and all natural integers

were expressed as fractions, for example, 0 and 1 were denoted by 0/1 and 1/1, respectively. It

only contained a few commands, such as :

• OPEN : expanding the expression in the parenthesis

• SBST : making substitution

• FCTR : factoring a given expression

• TRGA : expanding the sin(a+b) into sin(a)cos(b)+sin(b)cos(a)

Which is why the authors said that only two hours instruction was enough to use it.

Although ALGY didn't come into extensive use, some of its ideas were succeeded by the

FORMAC system, which is still popular today.

1.2.3 FORMAC

FORMAC is an acronym of FORmula MAnipulation Compiler. It was developed by J.

E. Sammet and Robert G. Tobey at IBM's Boston Advanced Programming Department in

July, 1962 [1]. Five months later (December, 1962), the first complete draft of language

specifications was prepared and implementation design started immediately thereafter. After 18

months of extensive experiments, the first complete version was successfully running on the

IBM 7090/94 computer in April, 1964. For the sake of obtaining feedback from users to make

further improvement to the system, FORMAC was released for public use by the authors

themselves (not by IBM) in November, 1964. This version of FORMAC was written in

4



FORTRAN IV. Three years later (November, 1967), the new version of FORMAC written in

PIM was released by the authors for use on IBM/360 systems.

The FORTRAN version of FORMAC kept most commands and notations of

FORTRAN IV. In addition, there were a couple of new commands added to allow it to do

algebraic manipulations. For example, LET assigns symbols to variables instead of numbers in

FORTRAN, SUBST makes substitution, EXPAND removes all parentheses in expressions

and COEFF obtains the coefficients of variables. The major PL/I FORMAC capabilities can be

divided into the following categories :

1. User control of simplification : EXPAND for expanding the parentheses expression,

DIST for applying the distributive law to all products of sums, etc.

2. Substitution : EVAL(expr,a,b) replaces a in expr by b.

3. Differentiation : DERIV performs partial differentiation.

4. Expression analysis : COEFF(exprl,expr2) returns the coefficient of exprl in expr2.

NUM and DENOM return the numerator and denominator, respectively. HIGHPOW

and LOWPOW return the highest and lowest power.

5. Storage allocation : SAVE(var) for storing the var to secondary storage.

6. Output : PRINT_OUT(expr) to pnnt out the required expressions.

7. Built-in functions : these include trigonometric, logarithm, exponentiation, square root,

hyperbolic function, etc.

8. User defined function : the user can define functions as needed.

FORMAC is now one of the most popular SAM systems. It is the first reasonably

general purpose system to receive extensive usage worldwide. With the advantages of longer

history and larger numbers of users, its accumulated contributions to SAM field are

remarkable. In 1977, the new version, called FORMAC 73, was released to replace the old

one.
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1.2.4 MATHLAB

MATHLAB l system was developed by C. Engeiman and his employees at MITRE Co.

in 1964 [6]. Its source language is LISP, but the commands are defined as English words. For

example, PLEASESIMPLIFY(x,y) is the command to simplify x and name it as y. In the fall

of 1967, the first version of MATHLAB was replaced by the second version, MATHLAB 68,

which operated on a PDP-6 machine with 256 K core memory. The input and output were

through a teletype-like keyboard with a fixed character display scope. The notations in the

second version were more ALGOL-like. MATHLAB was the first complete on-line system.

1.2.5 ALTRAN

ALTRAN is a system developed at the BELL TELEPHONE Laboratory in Murray Hill,

New Jersey by W. S. Brown, M. D. Mcllroy, D. C. Leagues and G. S. Stoller [1]. It was

running in late 1964 on the IBM 7090/7094, 7040/44, etc. The basic languages which

ALTRAN adapted were a mixture of FORTRAN II and FORTRAN IV. Since it was limited to

use in the BELL Lab., its contributions to the SAM field were small.

1.2.6 REDUCE

REDUCE was developed by A. C. Hearn of Rand Corporation, California, in 1963

[7]. At that time, he met Dr. John McCarthy, an inventor of the LISP language, who suggested

the use of LISP for the problems of elementary particle physics. Since then, Dr. Hearn, as a

theoretical physicist, has worked in the SAM area. In August 1966, the first publication was

issued [8]. This paper only talked about the specific application of SAM techniques to

elementary particle physics. Two years later (1968), the first paper describing a general algebra

system, "REDUCE", was published [9]. The name of REDUCE originated from this paper. Its

name is not an acronym. According to the description from the author himself, its name was

actually intended as a wit. He said "algebra system then as now_tended to produce very large

expressions for many problems, rather then reduce the results to a more manageable form".

The system at this time was called REDUCE for distinction from the new version, REDUCE 2,

which appeared in 1970. The big improvement was that the whole system was written in an

ALGOL-like dialect (call RLISP), rather than the parenthesized notation of LISP in which

REDUCE was written. At this time, the REDUCE 2 system was also released to users, making

the beginnings of a user community. Thereafter, REDUCE 2 was implemented successfully on

1 MA'rHLAB is not to be confused with MATLAB. MATLAB is the numerical software for matrix
operations, while MATHLAB is another symbolic and algebraic manipulator.
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theMichiganTerminal System (MTS) of the University of Michigan by Mike Alexander. After

a long silence, REDUCE 3 was distributed in 1983. Several significantly new packages were

added in this version, such as analytic integration, multivariate factorization, arbitrary precision

real arithmetic and equation solving. Following REDUCE 3, upgraded versions were also

released. They were REDUCE 3.1 released in 1984, REDUCE 3.2 in April, 1985, REDUCE

3.3 on July 15, 1987. Each of them contains bug fixes and additional capabilities. Instead of

implementation on MTS, the REDUCE 3.3 was first implemented on the APOLLO workstation

in the Computer Aided Engineering Network (CAEN) of the University of Michigan.

REDUCE 3.3 was also updated once in January 15, 1988.

REDUCE system has become one of the most well-known SAM systems. Its general

purpose design makes it possible to be used in a wide variety of areas. Its contributions are

confirmed by the number of papers published in different fields.

1.2.7 SCHOONSCHIP

SCHOONSCHIP was designed by M. Veltman at CERN, Switzerland in 1964 [10].

Its major applications are in the field of high energy physics, but it is sufficiently general to be

used for other calculations. It can deal easily with expressions of 104 to 105 terms on the CDC

6000 computer. It was limited to use within CERN.

1.2.8 ANALITIK

ANALITIK was developed at the Institute of Cybernetics in Kiev, Soviet Union, by the

direction of the well known Soviet cybernetician and academician V. M. Glushkov [11]. The

first paper discussing the system features was published in 1964. The language it used was

ALGOL-like and close to that of traditional mathematical notation and natural language. It

possessed interactive and batch processing modes. Since its implementation is highly machine

dependent, ANALITIK has only run on the MIR-2 computer.

1.2.9 FLAP

FLAP was written in LISP 1.5 by A. H. Morris, Jr. at the U.S. Naval Weapons

Laboratory in Dahlgren, VA. prior to 1967 [11. Obviously, the FLAP system wasn't released

to the public.

7



1.2.10 SAC

The SAC system was developed by Dr. George E. Collins at the University of

Wisconsin, Madison. The first version, SAC-I, was distributed in 1967 [4]. This was a highly

portable general purpose system, developed to replace one of the very earliest computer algebra

system, PM in IBM [see 1.2.1]. SAC-1 was replaced by SAC-2 in July, 1980. The SAC-2

was programmed in ALDES language, which was designed by Rudiger Loos and G.E. Collins

in 1973 to 1974. The SAC-2 system also provided the translator from ALDES to standard

FORTRAN to maintain its portability.

1.2.11 MACSYMA

MACSYMA is an acronym of project MAC's SYmbolic MAnipulator. It was originally

designed by C. Engelman, W. Matin, J. Moses for project MAC at M.I.T. in 1968. The

implementation of it began in July, 1969. The system has quintupled in size since the first

paper describing it appeared in 1971 ([12] [13] [14] [15]). It was made available over the

ARPA networks in May, 1972. MACSYMA has a lot of built-in mathematical functions and

graphic facilities which have made it one of the most powerful SAM Systems in the world.

Unfortunately, the University of Michigan didn't have it until September, 1988. The one

implemented on the APOLLO workstation in CAEN of the University of Michigan still doesn't

have a graphics package.

1.2.12 SCRATCHPAD

Although the name of SCRATCHPAD was chosen in 1970, the initial work on it can

be traced back to 1965. The SCRATCHPAD system was designed principally by James H.

Griesmer, Richard D. Jenks, Fred Blair, David Yun, and their colleagues, at the IBM Thomas

J. Watson Research Center, Yorktown Heights, New York ([16] [17] 118]). Unfortunately,

the name of SCRATCHPAD was not used for the first paper, presented in Bonn in 1970. One

year later, a revised version by Dick Jenks, called SCRATHPAD/1, was demonstrated at

SYMSAM/II in March 1971. After combining some new features, such as history file

(allowing users to backtrack), and system commands, the first completed SCRATCHPAD/1

manual was eventually published in 1975. After this, there seemed a stagnation in the progress

of the SCRATCHPAD system due to personnel changes. Jim Griesmer left the group to be a

manager of education at IBM research and Dick Jenks went to the University of Utah for a

sabbatical. When Dick Jenks returned to Yorktown Heights in the fall of 1977, David Yun

agreed to organize the "mode-base" ideas originated by Dick Jenks in 1973. This led to the

8



NEWSPADwhichthereafterwasrenamedto SCRATCHPAD84at theNew York conference

in 1984.However,thenameof SCRATCHPAD84 wasnotquiteappropriatesinceit would
takemorethanoneyearto finishthesystem.Thereforeit waschangedintoSCRATCHPADII,
which is thenameusednow. It becameavailablein 1985for testandevaluationto a limited

numberof usersfrom an IBM ownedmainframevia telenet,CSNETandARPANET. As yet,
it isnotcommerciallyavailable.

1.2.13 CAMAC

The CAMAC system was designed by Vera Pless in 1973 at M.I.T. [19]. The first

version of it ran interactively and was written in FORTRAN with sections in assembler

language. When Vera Pless moved to Chicago Circle in 1975, the CAMAC system was

transferred to the Circle's IBM 370-158 by William Pattern. The name of CAMAC is an

acronym of Combinatorial and Algebraic Machine Aided Computation. As the name implies, it

was for a specific application.

1.2.14 SHEEP

SHEEP was designed by I. Frick at the University of Stockholm, Sweden in 1975

[(20]. [21]) It was specialized for manipulating components of tensors. The source language it

uses is MACRO-10. It runs on DEC PDP 10 and PDP 20. The first version of SHEEP, now

called SHEEP 1, was written in assembler code for the DEC- 10/20 computer. Unlike the first

version, SHEEP 2 is written in standard LISP.

1.2.15 ORTOCARTAN

ORTOCARTAN is written in LISP. It was designed by Andrzej Krasinski in Poland in

1977 [22]. Its name is an acronym and is due to the specific application to the calculation of

Riemann, Ricci, Einstein and Weyl tensors from a given metric tensor using an ORTHonormal

set of CARTAN forms. Although the author said it could be relatively easily extended for other

uses, such as inverting matrices of arbitrary rank, it did not come into wide use.

1.2.16 MAPLE

The MAPLE system was designed by Bruce Char, Keith Geddes, W. Morven

Gentleman and Gaston Gonnet at University of Waterloo, Canada in December 1980 ([23]

[24]). The name "MAPLE" is not an acronym but rather it was simply chosen as a name with a

Canadian identity. There were two goals which oriented MAPLE's design. The first was to be

9



usedon a time sharingmainframecomputer.The secondwasto run it on a microprocessor-

basedworkstation. This was the major difference betweenMAPLE and REDUCE (or
MACSYMA).

1.2.17 muMATH

wntten in muSIMP (a LISP-like language), muMATH was designed and developed by

David R. Stoutmeyer and Albert Rich at the University of Hawaii in 1977 [25]. The first

version was called muMATH-77 and was experimental. Two years later, the Software House,

Inc., was founded by David Stoutmeyer and the first product, muMATH-79, was distributed

to users for the CP/M-80 operation system or Apple II family Z80 machine with 64 K bytes

core memory required. The second product called, muMATH-83, was not released for the IBM

personal computer until 1983. The muMATH-83 needs 256 K bytes RAM memory. Recently,

DERIVE has taken over the place of muMATH-83. The significant improvement is that

DERIVE combines the numerical, algebraic and graphical functions together, rather than just

algebraic functions of muMATH. The DERIVE system requires 512 K memory space for

normal execution.

1.2.18 MATHLIB & SMP

MATHLIB is an interactive general purpose SAM system. It was originally designed

and developed under the auspices of the Department of Mathematics at Harvey Mudd College,

California, in 1978. It was one of the products of Innosoft International Inc., of Claremont,

California and became commercially available in 1983. It can perform numerical and symbolic

operations. In addition, its graphical output is device-independent and allows it to be processed

by over 150 different graphics devices. The PRS subroutine embodied in the algebraic

subsystem of MATHLIB has more than 250 built-in functions for manipulation of

mathematical expressions.

SMP is another product of Innosoft International Inc.. It was designed at the California

Institute of Technology. It's written in C language and was originally developed to run on

VAX/780 under the UNIX operating system. In addition, there is a special design character in

SMP to allow for easy conversion between operating systems. It needs at least 2.5 megabytes

of memory space for typical usage.

10



1.2.19 MATHEMATICA

MATHEMATICA is a recent product of Wolfram Research, Inc. There are several

versions of MATHEMATICA for a variety of computers, such as for Apple Macintosh, DEC

VAX, IBM ,Cray, and so forth. It was designed and implemented by Stephen Wolfram, Daniel

Grayson, Roman E. Maeder, and their colleagues at the University of Illinois in 1988 [26]. It

integrates the algebraic manipulation, numerical computation, and graphical functions together

and allows the resultant expressions to be outputed in Ccode, FORTRAN code, and text form.

Its source language is C. The memory requirement for normal operation is about 3.7 mega

bytes. The MATHEMATICA as well as DERIVE are expected to be two dominant systems in

the coming decade.

1.2.20 Mathcad

Mathcad is developed by Mathsoft, Inc. at Cambridge, Massachusetts. The earlier

version appeared on market around 1987. This system adopted the core functions of MAPLE

and extented itself by including the graphic capacity. It is written in C language. The latest

version 3.1 is available in 1992. This newest version can run in IBM, Macintosh PCs and unix

based machines. The minimum space requirements are two megabyte RAM and seven

megabyte hard disk. Unlike most of the SAM systems, the command inputs in this system are

menu driven. This allows users to communicate with machine by simply picking and clicking.

This unique feature not only saves users lots of efforts in typing but also reduces human errors

which sometimes turn out a unmanageable, hard-to-be-debugged results.

1.3 Conclusion

From a history of the SAM system, we can draw the following conclusions :

• The SAM systems evolved from small, immature systems to well-designed, multi-

function systems, to compact systems which can be used on microcomputers.

• At present, there is no unique best system. The definition of the best SAM system

depends on many variables, such as computer availability, availability of software,

familiarization with software, the problem to be solved, software contents, circumference

facility, and so forth.
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system

PM
i,

ALGY

FORMAC

MATHLAB

year

1956

1961

1962

1964

1964

ANALITIK

ALTRAN

RED UCE 1963

SCHOONCHIP 1964

1964

FLAP

SAC

MACSYMA

SCRATCHPAD

CAMAC

SHEEP

1967

1967

remarks

IBM

WDLP Co.

IBM - Boston

MITRE Co.

BELL Lab.

Rand Co.

CERN

Soviet Unions

U.S. Navy

Uni. of Wisconsin

1968 M.I.T.

1965 IBM-Yorktown Heights

1973 Vera Pless

1975

1977ORTOCA RTA N

MAPLE 1980

muMATH & DERIVE 1977

1977

1977

1988

1992

MATHLIB

SMP

MATHEMATICA

Mathcad 3.1

Sweden

Poland

Canada

Uni. of Hawaii

Harvey Mudd College

Caltech

Uni. of Illinois

Mathsoft Inc.

Table 1.1 • List of symbolic and algebraic systems
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CHAPTER II

SURVEY OF THE LITERATURE ON SYMBOLIC AND ALGEBRAIC

MANIPULATION

2.1 Introduction

The documents published in the symbolic and algebraic manipulation field are not as

plentiful as those in the area of numerical analysis. However, after a careful classification of the

existing documents, one finds that the developmental history is closely related to research

directions and content of the publications. In general, the documents about SAM may be

divided into four categories. They are :

1. About SAM system itself --- More than half of the existing papers belong to this class.

Most of them were published in the period of the first generation. The contents are

focused on the following topics"

(a)The introduction of the new SAM system, including the capacities, functions, etc.

[1][2][3].

(b) The technical reports of softwares [4] [5] [6] [7].

(c) The data structure, language and implementation [8][9].

.

Applications to science --- This class of publications is the second largest of the existing

SAM papers. One of the major impetuses in developing SAM systems was due to the

requirements from scientists, especially in the fields of elementary particle, general

relativity and celestial mechanics. Some of the famous examples were collected in the

paper by Hearn [10]. One of them is the recalculation of Delaunay's moon coordinates

by Deprit, Henrard and Rom in 1970 [11] The others are such as Campbell and Hearn's

analysis of the Feyman diagram [13], Rudiger Loos' work about Archimedes' cattle

problem [14], and Roberts' and Boris' on the solution of partial differential equations

[15].
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. Applications to engineering --- In fact, most engineering problems are not solvable

analytically. Therefore, numerical approximation usually predominates in the solution of

engineering problems. This is one of the reasons why the engineering applications of

SAM has not been as popular as those on science. However, there are two factors which

necessitate the use of symbolic and algebraic manipulation in engineering. The first is

that the accuracy requirement of a solution of numerical approximation becomes more

and more strict today. The second is that the problem to be solved usually involves more

sophisticated algebraic manipulation due to the more strict requirements of solutions.

Due to these factors, the applications of symbolic and algebraic manipulation to

engineering problems has became more popular recently. Some of the publications, such

as those written by Madson, Smith and Hoff [16], Levi [17], Wilkins [18], Noor and

Anderson [19], Korncoff and Fenven [20], Steinberg and Roache [21], will be

discussed in more detail in the next paragraph.

. Application in the other fields --- In addition to science and engineering, Symbolic and

algebraic manipulation has been applicable in other fields, such as information

management [22], education [23] [24] and business [25].

As time goes on, more and more applications will be reported in various fields. This is

due to the fact that :

1. The ongoing improvement in the memory space of hardware systems, especially

personal computers.

2. The availability of variously sound SAM software systems.

However, in order to see that scratch paper is replaced by the computer screen in all

areas, the people in the educational field should assume the responsibility of utilizing this new

tool. As the discussion in the paper, written by Richard Pavelle in 1985, points out [25], only

about 20 percent of people in the related field are aware of the existence of SAM system and

less than a quarter of these actually use them.

2.2 Reviews of SAM applications in engineering

(1) Computer algorithms for solving non-linear problems

A paper [ 16] published in 1965 is believed to be the earliest document which employed

computerized symbolic and algebraic manipulation to solve an engineering problem. The

16



authors,W. A. Madson,L. B. SmithandN. J. Hoff, developedtheir own softwareto find the
solution for thepost-bucklingbehaviorof thin-walledcircularcylindrical shellsunderaxial
compression.Themajorcommandsdevelopedbythemwere:

*SERIESMULT : To expandtheexpressions,e.g.(a*sin(x)+b*cos(y)) n.

*TRI.GSPAND : To treat non-double trigonometric terms, such as sin2(x),

sin(x)*sin(2x)*cos(y) etc., into double trigonometric terms like cos(y)*cos(x).

*SEARCHSTORE : To search and collect the coefficients of like trigonometric function,
then store them.

*NEWTNRAPH : To solve the nonlinear system equations obtained from the calling of the

last three commands by using the Newton-Raphson iteration method.

The application of the above commands to the shell post-buckling problem started at the

assumption of radial displacement,

w=t ._Aifcos( ixt/ Ax )cos(jny/ Ay )

Then by the strain-displacement relationship and Hook's law, the stresses could be obtained.

As the stresses (therefore the Airy stress function) were known, the membrane energy,

bending strain energy and the potential of axial load could be derived. The resultant total

potential energy was then minimized with respect to the coefficients of radial displacement w.

The system equations obtained after the minimization then could be solved by calling the
NEWTNRAPH command.

(2) Symbolic algebra by computer-applications to structural mechanics

One of the earliest publications of symbolic manipulation application in the engineering

field was in 1971, when only a few SAM systems existed. Only REDUCE and FORMAC

were mentioned in this paper. At the beginning of the paper [17] by I. M. Levi, he described

the story of SAM application in seeking the minimum theoretical post-buckling load for a thin

circular cylindrical shell under axial compression. Starting from 1941, Von Karman and Tsien

indicated that a low post-buckling load could be found with only two terms included in the

series expression of normal displacement. This inconsistency in the Von Karman-Tsien's

solution was not found until J. Kempner increased the series into three terms and found a

further lowering of the post-buckling load in 1954. Since then, additional investigations were

conducted as new terms were added into the series solution. But finally everybody was limited
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by their inability to solve the complex algebraic equations without error. The drive to seek the

minimum load did not end until 1965 when Madson, Smith and Hoff of Stanford University

wrote the special program in ALGOL to increase the series into 14 terms and found the

minimum load approached zero, which revealed the basic fallacies in the application of the

Karman-Tsien procedure.

The second topic in the paper talked briefly about the derivation of a stiffness matrix for

a compatible triangular plate bending element by symbolic and algebraic manipulation. Then an

example of the calculation of creep strain rate in plate and shell problems was demonstrated

using SAM. This computation started from the x, y components of stress which were

expressed as a double trigonometric series, followed by the calculation of equivaleat stress,

and ended in the substitution of the above quantities into strain rate equations. The resultant

fortran codes were printed out by REDUCE. The paper ended with a brief discussion on the

REDUCE capacities.

(3) Applications of symbolic algebra manipulation language for composite structures analysis

This paper [18] was published in 1973 by Dick J. Wilkins, Jr. of General

Dynamics/Convair Aerospace Division, 1::olt Worth, Texas. The author used PL/I FORMAC to

calculate the strain energy for an anisotropic shell. The strain energy can be written as

x

N
Y

N_

M_

My

M_

!r

"E x

Cy

g_y

K" x

Ky

K_y

dO (2.1)

Where

• N • stress resultants.

• M • moment resultants.

• e • mid-plane strain.

* K • curvalure.

• Q: shell sttrface area.
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• V" strainenergy.

and the constitutive equations are expressed as follows •

Ny

N._

M_

My

'A, I A12 A 13 BI! B12 B13

At2 A 22 A 23 Bt2 B22 B23

A13 A 23 A33 BI3 B23 B33

BII BI2 BI3 Dll Di2 Di3

812 822 823 DI2 D22 D23

Bl3 B23 B33 Dr3 D23 D33

_X

Ey

K" x

K'y

K._ j

(2.2)

Where • Aij , Bij , Dij are the pertinent constitutive components of Hooke's Law. The

equation (2. l) and (2.2) can be combined into the form

V = _fa[{e}r[A]{e}+2{e}r[B]{x}+ {r }r [D ]{ r } ]d Q (2.3)

Then the displacements are approximated as

w - _ _C:.XmY. (2.4)

_,_ _ OX.,

,-.,,_ _ OY.

v - _C,,,X,,.---_-- (2.6)

Where the Cij are constants to be determined by Rayleigh-Ritz method. By Vlasov shell

theory, the strain-displacement relations are

au

E x -- -_"-

dv w

e, ""_"+ T

3u Ov

oXw
_ x " t_X 2

w
I( y ==

R'

3Zw 1 3u 1 o_
r_ =-2 +

oxoy ROy R Ox

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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WhereR hereis theradiusof shellcurvature.

With theassumptionof asymmetricconstitutivematrix,thecalculationof the integrand
of equation(2.3) wasdoneby FORMACby thesubstitutionof equations(2.4) to (2.12) into

(2.3).TheRayleigh-Ritzmethodwasthenappliedto takethepartialderivativewith respectto

all undeterminedconstantsin the displacementseries.This was also manipulated by
@X ,_ @Y 4

FORMAC. The resultant expressions were the energy variation which is in terms of ---_-, T

and their derivatives. Since FORMAC was incapable of performing the symbolic integration at

that time, the informal "symbolic integration" was done by examining each term in the energy

variation for a specific combinations of derivatives. Each time a certain type was found, it was

replaced by a symbol and an appropriate constant to allow for the non-dimensionalization of the

integrals. There were a total of twelve different integrations in the energy variation equation.

The final expressions were then slightly modified into FORTRAN code by adding DO loops

and suitably changing the indices by hand.

(4) Computerized Symbolic Manipulation in Structural Mechanics --- Progress and Potential

In the beginning of the paper [19], A. K. Noor and C. M. Anderson introduced the

symbolic and algebraic manipulator MACSYMA. These included the brief history, basic

capacities and special commands, as well as associated packages.

The second part of the paper gives three applications in the structural mechanics field by

using MACSYMA. They are •

1. Generation of characteristic arrays of finite elements for a shear flexible shallow shell

element --- There were three types of basic integrals for linear problems and three types

of basic integrals for geometrically nonlinear problems. These were

(a) Linear problems

A '1 . ,,N'NJdI2

B ,, .. f ,, N tgaN Jd [2

O i

- f ,, o_,,N 3aNid12

(2.13)

(2.14)

(2.15)

(b) Geometrically nonlinear problems
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C qk -f ,.N 3,NJO Nkdg2
a # (2.16)

,jk ' J o_ N kd g'2
D u_t .. f ,,O_,N 0#N r (2.17)

qkn i l k

Ec, arp " f ,.aoN cgoN cgrN OpN"dl-2
(2.18)

The evaluation of integrals in equations (2.13) and (2.14) can be performed

analytically by MACSYMA. However in general the integrand of equations (2.15) to

(2.18) cannot be integrated exactly due to the existence of a Jacobian determinant in

the denominator of the integrand 2 Therefore the hybrid approach (numerical

quadrature plus symbolic manipulation) was proposed. The number of integrations to

be performed can be substantially reduced by the help of permutative and Dihedral

symmetries.

2. Evaluation of effective stiffness and mass coefficients of continuum models for repetitive

lattice structures --- The symbolic manipulations by MACSYMA included the evaluation

of strain components, calculation of strain energy (with the thermoelastic strain energy)

and kinetic energy, computation of stiffness and thermal coefficients as well as effective

mass coefficients, forming the Lagrangian of the system and finally obtaining the

governing differential equations. The numerical analysis started as soon as the governing

equations were obtained. This numerical analysis was also done in MACSYMA. The

results of mode shapes were then plotted out by MACSYMA's graphic facility.

3. Application of the Rayleigh-Ritz technique to the free vibration analysis of laminated

composite elliptic plates --- The tasks done by MACSYMA in this application were

(a) Selecting approximation functions for each of the fundamental unknowns

displacement amplitude with undetermined coefficients and developing analytic

expressions for the specific strain and kinetic energies as quadratic functions of the

undetermined coefficients.

(b) Differentiating specific strain and kinetic energies with respect to the undetermined

coefficients symbolically.

(c) Evaluating stiffness and mass coefficients by performing integrations over volume.

2This has been done successfully, see the details in chapter three.
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(d) Simplifying the expressionsfor the nonzerostiffnessand masscoefficients and

developingFORTRANcode.

After stiffnessandmasscoefficientshadbeenevaluated,thevibration frequenciesand

modeshapescould beobtainednumericallyby usinganyschemefor generalizedeigenvalue
problems.

The lastpart of thepaperdiscussedtheproblemswhich limited theapplicability of

computerized symbolic manipulation.The major problemsmentionedin the paper were
summarizedasfollows.

were

1. Production of large expressions during the computation (intermediate expressions

swell),

2. Slow speed of symbolic computation.

3. Low portability of large symbolic manipulation systems.

4. Need for analyst interaction during the symbolic computation.

5. Inability to estimate the storage requirements and CPU time for symbolic computations.

6. Problems associated with interface between algebraic and numerical calculations.

In addition, the authors suggested the directions of future research in this field. They

1. Reduction of a general (tensor) formulation of structural mechanics problem to its

computational level.

2. Hybrid computations.

3. Approximate symbolic integration of rational functions.

(5) Symbolic generation of finite element stiffness matrices

As the title implies [20], the authors A. R. Korncoff (Boeing computer service, Seattle

WA) and S. J. Fenves (Carnegie-Mellon University) used the symbolic processor MACSYMA

to assist in the development of a software to generate the stiffness matrices for finite element

analysis. These included the construction of the strain-displacement matrix, calculation of the
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determinantof theJacobian,andmultiplicationof relevantmatrices.The integrandwasthen

integratedsymbolicallyif it wasintegrable(e.g.theconstantstraintriangleelement).Otherwise

it would beoutputasthefunctionof theproblemparametersfor furthernumericalevaluation

(e. g. four-node quadrilateralelement)3. In addition, the softwaregavetwo options in the

materialpropertymatrix. Onewas "user-supplied"materialproperty.Theotherwas "library
supplied"which providesone-dimensionalelasticity,plainstress,plain strain,axisymmetric,
and3-D linear isotropicelasticity Theexampleof constructingtheisoparametricformulation
for constantstraintrianglewasalsoshownin theappendixof thepaper.

(6)Symbolicmanipulationandcomputationalfluid dynamics

TheauthorsS.SteinbergandP.J.Roache[21] employedthesymbolicandalgebraic
manipulatorVAXIMA, a VAX versionof MACSYMA, to transformthephysicaldifferential
equationand theboundaryconditionsinto therectangularregionandthenconstructedtheso

calledstencilcoefficientmatrix for afinite differencescheme.Themajorideascamefrom the

generalelliptic problems. In physical coordinates,the linear elliptic equation could be
expressedas

/1 /1

Lf - O=f + b, + cf + d
OX_dX Ox (2.19)

Where aij, bi, c, d were given and were the function of coordinates in general.The problem

was to find a numerical approximation solution which satisfies equation (2.20) and the given
boundary conditions.

Lf=0
(2.20)

Since the physical domain is not regular in general, it is necessary to transform the

physical coordinates into the rectangular, computational coordinates in which the finite

difference scheme could be constructed easily. This coordinate transformation involved the

calculations of the Jacobian matrix, its determinant, and cofactors. The equation in new
coordinates would become

I1 #I

-, ,a,,&,&, . ae, (2.21)

3 The integration (2.15) for a four-node isoparametrical quadrilateral element has been

obtained exactly and will be discussed in detail in chapter three of this report.

23



Wherethetilde denotedthatthequantitieswerefunctionsof computationalcoordinates.

After the transformationof equationand boundaryconditions had beendone, the
centereddifferencemethodwasemployedto constructthefinitedifferenceschemeasfollows"

X C,.j._(et, eve3)g(e l+iAe
I,Iq, Iqkl,,3

ee2 +j Ae z, e3 +k Ae3)= R(et,e ve 3) (2.22)

Where the coefficient ci,j, k were called the stencil and was constructed by symbolic

manipulation. Taking advantage of the symmetric property, the number to be computed for

ci,j, k could be dropped to 10 from 27. The resultant expressions of ci,j, k then could be coded

in the FORTRAN language for the next numerical scheme.

2.3 Conclusion

After making a survey of the publications on symbolic and algebraic manipulation, the

following conclusions are drawn '

. None of the papers applying SAM to engineering problems tried to get closed-form

solutions_ They kept traditional methodology by increasing the terms of the

approximation function to get more accurate solutions. This is due to the difficulty in

solving generally partial differential equations or integral equations analytically.

. The papers discussing the application of symbolic and algebraic manipulation on the

finite element analysis stop at the step of making a local stiffness matrix, local mass

matrix, etc. The same situation also occurred in finite difference analysis. This was

because

(a) The finite element and finite difference methods are themselves approximation

methods. The accuracy of results depends on many factors, not just on round-off

error or integration error which can be cured by symbolic and algebraic

manipulation. Although it was also one of the purposes to improve the accuracy of

the solution, the major consideration in applying symbolic and algebraic

manipulation was to help in the formulation of the tedious mathematical equations.

(b) In general engineering problems, the stiffness matrix in FEA and stencil coefficient

in FDA are huge in dimension. The limitation of memory space makes the execution

of FEA's (or FDA) job impossible by symbolic and algebraic manipulation.

Therefore it is necessary to be finished by numerical analysis.
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(c) Althoughmostof theSAM systemsalsopossessthecapacityof numericalanalysis,

theexecutionspeedof numericalanalysisin symbolicandalgebraicmanipulatoris
slower in comparison to that in pure numerical analysis. The difference of

efficienciesbetweenthemis remarkablewhenthejob is big.Thereforeit is bestnot
to haveit donecompletelyin symbolicandalgebraicmanipulation.As thedocuments

showed,nobodydid thewholeFEAor FDAjob in symbolicmodealone.
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CHAPTER III

CAPABILITIES OF THE SYMBOLIC AND ALGEBRAIC MANIPULATORS

3.1 Introduction

The capabilities of the symbolic and algebraic manipulator are quite system dependent.

Roughly speaking, a system which is designed for general purpose usage usually possesses

the functions of differentiation, integration, matrix operation, polynomial manipulation, pattern

match, variable substitution and equation solver. Some systems, such as MACSYMA and

MATHEMATICA, have a lot of built-in mathematical functions which allow the users to get

the answers by just calling the appropriate command once. Others, like REDUCE, may need
users to write a short program to get the same answers.

This chapter will demonstrate the fundamental capabilities of the symbolic and algebraic

manipulators which are available at hand by solving examples of applied mechanics. Since

REDUCE is the oldest system available at The University of Michigan, most examples will be

demonstrated by using REDUCE. Of course, MACSYMA will be employed to help the
demonstration if it is necessary.

Unfortunately, REDUCE doesn't possess the graphic function, and the version of

MACSYMA being used in The University of Michigan also doesn't include the graphics

package, although it is available on the market. Therefore, the postprocessing of the results

from symbolic and algebraic manipulators will be done by other graphics packages.

3.2 What can the symbolic and algebraic manipulators do ?

In this section, some of the most useful operations in symbolic and algebraic

manipulation are demonstrated in detail by examples. They are differentiation, integration,

matrix operation, algebraic equation solving, treatment of trigonometric function, differential

equation solving, polynomial and rational operation, fortran code output, number system,

substitution and built-in functions. The strategies and particular techniques are also mentioned

at the place where they are necessary.
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3.2.1 Differentiation

All differentiations, without exception, can be done analytically by REDUCE. If it is

necessary, REDUCE knows how to apply the chain rule to solve problems. The powerful

capabilities of this analytical differentiation will probably replace traditional numerical

differentiation in many cases, such as the evaluations of the Jacobian and Hessian matrices

However, the wrong results may be obtained by careless or naive users. For instance, in

finding the first derivative of x xx with respect to x. Two different solutions may be obtained as
follows"

1: on time;
Time: 134 ms

2: df(x**(x**x),x);
X

X 2

X +X*(LOG(X) *X + LOG(X)*X + 1)
..................................................

X
Time: 383 ms

3: df(x**x**x,x);
2

X

X *X*(2*LOG(X) + I)
Time: 233 ms

Here the first solution is correct. How to judge the correctness of the results is one of

the important tasks in symbolic manipulation. A sound background knowledge in the SAM and

problem-related fields is very helpful in checking them.

dx
In some cases, the unevaluated differentiation form of functions, such as "k" is desired

to be retained throughout the computation. This also can be done as follows •

4: depend x,t;
Time: 84 ms

5: depend y,t;
Time: 83 ms

6: p:=a*x*y;
P := A*X*Y
Time: 150 ms

7: df(p,t);

A*(DF(X,T)*Y + DF(Y,T)*X)
Time: 133 ms
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3.2.2 Integration

In REDUCE, all the integrations performed by the command INT are indefinite

integrations with the integration constants discarded. If the function is not integrable by

REDUCE (the closed-form solution may exist theoretically), the original form will be displayed

on the screen. The definite integration may be obtained by further substituting the upper and

lower limits into the results after the indefinite integration.

%A non-integrable case.
8: int(sqrt(a^2-x^2),x);

2 2

INT(SQRT(A - X ),X)
Time: 950 ms

%An integrable case.
9: int(1/(aa2+xa2),x);

X

ATAN(---)
A

A

Time: 466 ms

In most cases, the non-integrable integrand will become integrable after appropriate

manipulation. This pre-treatment involves the technique of changing the integrating variables in

fundamental calculus. Sometimes the intelligent users can substantially extend the capabilities

of the symbolic and algebraic manipulator by suitably combining human intelligence with the

tireless and errorless advantages of computer. For example, if the x in command 8 is

substituted by a'cos(t), then dx=-a*sin(t)*dt and the integration of _ x2 with respect to x

will become the integration of -a2*sin2(t)dt with respect to t, which is integrable by REDUCE.

After the integration is done, the original variable x may be substituted back to get the desired

expression in terms of x. The check may be done by skeptics by differentiating the resultant

expression to get the original integrand. The following three commands demonstrate these

procedures.

10: int(-aa2*(sin(t))^2,t);

2

A *(COS(T)*SIN(T) - T)
...............................

2
Time: 2134 ms
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11: sub(cos(t)=x/a,sin(t)=sqrt(1-x**2/a**2),t=acos(x/a),ws);

X 2 2 2

ACOS(---)*A - SQRT(A - X )*X
A

..........................................

2
Time: 716 ms

12: df(ws,x);

2 2
A-X

2 2

SQRT(A - X )
Time: 450 ms

3.2.3 Matrix operation

Matrix operation is one of the powerful capabilities of symbolic and algebraic

manipulators. These include the addition and multiplication of matrices, multiplication of

matrices and scalars, inverting matrices, calculating the determinant of a square matrix, finding

the trace, computing the eigenvalues and associated eigenvectors exactly if they are available
and so forth.

3.2.3.1 Matrix multiplication

The three body rigid rotation 1-2-3 in dynamics is a good example of the utility of

matrix multiplication. In robotics, it is necessary to find the analytical form of final orientation

from which the rotation angles of each arm can be computed. The final direction cosine matrix

d is obtained from the product of three consecutive direction cosine matrices a, b, c.

%Declaring four matrices.

13: matrix a(3,3),b(3,3),c(3,3),d(3,3);

%Inputting matrices.

14: a:=mat(( 1,0,0),(0,cos(q 1),-sin(q 1)),(0,sin(q 1),cos(q 1)));
A(1,1) := 1
A(1,2) := 0
A(1,3) := 0
A(2,1) := 0

A(2,2) := COS(Q1)
A(2,3) :=-SIN(Q1)
A(3,1) := 0

A(3,2) := SIN(Q1)
A(3,3) -= COS(Q1)
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Time: 700ms

15:b:=mat((cos(q2),0,sin(q2)),(0,1,0),(-sin(q2),0,cos(q2)))$
Time:367ms

16:c:=mat((cos(q3),sin(q3),0),(-sin(q3),cos(q3),0),(0,0,1))$
Time: 383ms

%multiplicationof threematrices.
17:d:=a*b*c;
D(1,1) :=COS(Q2)*COS(Q3)
D(1,2) :=COS(Q2)*SIN(Q3)
D(1,3) :=SIN(Q2)
D(2,l) :=-(COS(Q1)*SIN(Q3)-COS(Q3)*SIN(Q1)*SIN(Q2))
D(2,2) :=COS(Q1)*COS(Q3)+SIN(Q1)*SIN(Q2)*SIN(Q3)
D(2,3) :=-COS(Q2)*SIN(Q1)
D(3,1) "=-(COS(Q1)*COS(Q3)*SIN(Q2)+SIN(Q1)*SIN(Q3))
D(3,2) :=-(COS(Q1)*SIN(Q2)*SIN(Q3)-COS(Q3)*SIN(Q1))
D(3,3) :=COS(Q1)*COS(Q2)
Time:617ms

Theterminators$ incommandlines15and16prohibittheprintingof resultsandsave
almosthalf of thetimecomparedtocommandline 14whichusestheotherterminator.

3.2.3.2 Matrix inversion

Unlikenumericalanalysisin whichthetime-consumingoperationof matrix inversionis

to beavoided,to find theinverseof amatrixsymbolicallyis oneof thesignificantandsimple
tasksin symbolicandalgebraicmanipulation.Oneimportantapplicationof it is in solvinga

systemof linearequations.For example,theproblemof finding acurveto fit thegivensetof
databy theleastsquaremethodresultsin solvingasystemof linearequations.Thecoefficient

matrixhereis theHilbert matrixwhich isusuallyusedto investigatethephenomenonof round-
off erroraccumulation.REDUCEcansolvethisproblemexactly.Thenumericalsolutionand

symbolicsolutionaretabulatedin Table3.1,3.2, 3.3 for threedifferent Hilbert matrix sizes.

As thetablesshow,thenumericalsolutionis notcapableof producingaccurateresultsevenfor

the caseof the7*7 Hilbert matrix. The deviationbetweenbothsolutionsis also plotted in
Figure3.1.Thesignificanceof symbolicandalgebraicmanipulationisevident.

8: matrix h(40,40),x(40,1)$

9: for i:=1:40do forj:=l:40 doh(i,j):=l/(i+j- 1)$
Time:30917ms

10:for i:=1:40dox(i,1):=i$
Time: 583ms

11:h:=(1/h);

33



H(1,1) :=1600
H(1,2) :=-1279200
H(1,3) :=340267200
H(1,4) :=-45113759600
H(1,5) :=3573009760320
H(1,6) :=-187.583012416800

H(40,39) :=-1141149866470104951399125616277120066810096080000
H(40,40) := 58520505972825894943544903398826670092825441X)_
Time: 1355067ms

12:x:=h*x;
X(1,1) := -64000
X(2,1) := 102272040
X(3,1) :=-40781023920
X(4,1) := 7204667408120
X(5,1) :=-712815447183840
X(6,1) := 44879235720719400
X(7,1) := - 1948531047013671120
X(8,1) := 61638279321584754360
X(9,1) := - 1478390066741437724160
X( 10,1) := 27706961874232024704320
X(11,1) := -415343205971360018352000
X(12,1) := 5073605405648309638180800
X(13,1) := -51267503668234803803526400
X( 14,1) := 433831946060133824442926400
X( 15,1) := -3105695134246771063279900800

X(33,1)
X(34,1)
X(35,1)
X(36,1)
X(37,1)
X(38,1)
X(39,1)

:= -275148980879869194392659362117120
:= 129027970745724768036578024940720
:= -49525830202172298308155472545440
:= 15151287095628987186696245706000
:= -3551734684918636715496119886400
:= 598923394712817307441549441200
:= -64662238360272798660726511200

X(40,1) := 3356375056654755429131776400
Time: 96000 ms
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x Exact REDUCE solution

x(1) 125

Gauss elimination solution

124.7899166408321

x(2) -2880 -2875.997324887610

x(3) 14490 14472.49323423709

x(4) -24640 -24613.29019994230

x(5) 13230 13216.83350607823

Table 3.1 • Comparison of solution for 5*5 Hilbert matrix

x Exact REDUCE solution

x(1)
-216

x(2) 7350

Gauss elimination solution

-204.4675087167038

7027.565254454758

x(3)
-57120 -54968.63675793860

x(4) 166320 160780.3224850843

x(5) -201600 - 195532.2818417542

x(6) 85932 83555.641 56991533

Table 3.2 • Comparison of solution for 6*6 Hilbert matrix

x Exact REDUCE solution Gauss elimination solution

x(1)

x(2)

x(3)

343 131.3201346851223

- 16128 -7941.23464123 5595

177660 100320.8278414759

x(4) -772800 -4761 54.4030660979

x (5) 1559250 1020735.514691367

x(6) - 1463616 - 1001760.776649569

x(7) 516516 365761.52976973 52

Table 3.3 • Comparison of solution for 7*7 Hilbert matrix
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Figure 3.I :Error between the solutions of REDUCE and Gauss elimination

3.3 Eigenvalues and Eigenvectors

To find the eigenvalues and eigenvectors for a matrix is another important task in the

application of symbolic and algebraic manipulation. Since to solve the eigenvalue problems

analytically for an arbitrary dimensional matrix is theoretically impossible, the following

examples only show the exact solutions for a 3 by 3 matrix.

21: matrix s(3,3)$

22: s:=mat((sxx,sxy,sxz),(sxy,syy,syz),(sxz,sxy,szz))$

23: mateigen(s,eta);

3 2 2 2 2
{{ETA-ETA *SXX-ETA *SYY-ETA *SZZ+ETA*SXX*SYY+ETA*SXX*SZZ-ETA*SXY

2

-ETA*SXY*SYZ-ETA*SXZ +ETA*SYY* SZZ+SXX* SXY* SYZ-SXX*SY y*SZZ
2 2 2

-SXY *SXZ+SXY *SZZ-SXY*SXZ*SYZ+SXZ *SYY,
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ARBCOMPLEX(1)*(ETA*SXZ+SXY*SYZ-SXZ*Syy)
MAT(I,1):= ...........................................................................

2 2
ETA -ETA*SXX-ETA*SYY+SXX*SYY-SXY

ARBCOMPLEX(1)*(ETA*SYZ-SXX*SYZ+SXY*SXZ)
MAT(2,1):=...........................................................................

2 2
ETA -ETA*SX.X-ETA*SYY+SXX*SYY-SXY

MAT(3,1):=ARBCOMPLEX(1)}}
Time: 1283ms

24: s:-mat((5,1,0),( 1,2,4),(0,4,3))$
Time:284ms

25: mateigen(s,eta);

3 2
{{ETA -10*ETA +14*ETA+53,

,

4*ARBCOMPLEX(2)
MAT(l,1) := ..............................

2
ETA - 7*ETA + 9

4*ARBCOMPLEX(2)*(ETA - 5)
MAT(2,1) := ........................................

2
ETA - 7*ETA + 9

MAT(3,1) := ARBCOMPLEX(2)}}
Time: 666 ms

26: trace(s);
SXX + SYY + SZZ

Time: 100 ms

As the command lines 23 and 25 show, the solutions from

MATEIGEN contain three parts. They are

(a) Characteristic equation.

(b) The number of repetition roots. It's one in the above examples.

(c) Eigenvectors.

REDUCE by calling
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If the eigenvaluesare required, the characteristic equation needs to be solved in

addition. The equation solver command SOLVE which will be demonstrated later can meet this

requirement. The ARBCOMPLEX(1) which appeared in the eigenvectors is referred to as

"arbitrary complex constant". Examples 24 and 25 also show results from REDUCE by

substituting numbers into matrix S. The trace of the matrix is also evaluated by the command

TRACE as shown in example 26.

3.2.4 Equation solver

REDUCE can solve the polynomial equation up to order three exactly. If the solution

includes the imaginary part, the "I" will show up to represent the imaginary symbol. The

following example solves the characteristic equation obtained above.

27:solve(ETA_'*3 - 10*ETA**2+ 14*ETA+53=0,eta);

2/3

{ETA=-((63*SQRT(229)* 1-691*SQRT(3)) *SQRT(3)* I+(63" SQRT(229)*I-691,

2/3 1/3 1/3 1/6 2/3

SQRT(3)) -20*(63*SQRT(229)*I-691_SQRT(3)) *2 '3 -58*2 *SQRT(3)*

1/3 2/3 1/3 1/3 1/3 1/6
• 3 *I+58"2 "3 )/(6*(63*SQRT(229)*I - 691*SQRT(3)) *2 "3

2/3

ETA=((63*SQRT(229)*I - 691*SQRT(3)) *SQRT(3)*I - (63*SQRT(229)*I - 691"

2/3 1/3 1/3 1/6 2/3

SQRT(3)) + 20*(63*SQRT(229)*I-691*SQRT(3)) *2 *3 -58*2 *SQRT(3)*

1/3 2/3 1/3 1/3 1/3 1/6

3 *I-58'2 *3 )/(6*(63*SQRT(229)*I-691*SQRT(3)) *2 *3 ),

2/3 1/3
ETA=((63*SQRT(229)*I - 691*SQRT(3)) + 10*(63*SQRT(229)*I - 691*SQRT(3))

I/3 1/6 2/3
*2 *3 + 58*2

Time: 5717 ms

1/3 1/3 1/3 1/6

*3 )/(3*(63*SQRT(229)*I - 691*SQRT(3)) *2 *3

If the numerical mode NUMVAL, complex switch COMPLEX and FLOAT mode are

turned on, the numerical solution of three eigenvalues can be obtained in sixteen digits

precision by default. The imaginary parts in the following example are very small and are due

to the round-off errors.

28:solve(ETA**3 - 10*ETA**2 + 14*ETA + 53=0,eta);
{ETA=4.830750950611553d0 + 2.991124223331416d-7"I,
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ETA=-(1.6167630306368408d0+ 6.960060167347475d-8"I),
ETA=6.786003556862447d0+ (-2.295118206596669d-7)*I }
Time: 1567ms

REDUCEcansolvesystemsof linearalgebraicequationsexactly.The limitation is

determinedonly by thememorycapacityof thehardwaresystem.Thefollowing examplefinds
theminimizationof aquadraticfunction

Q=kl*yln(2}+k2*yl *y2+k3*y2h{2]+k4*y2*y3+kS*y3_2]_k6,y3 subject to yl +y2=2

29: Q: =kl *y 1* *2+k2" y 1*y2+k3* y2* "2+k4" y2* y3+k5* y3** 2-k6' y3+y4* (y 1+y2-2) $
Time: 550 ms

30: a:=df(q,yl);
A := 2*KI*Y1 + K2*Y2+ Y4
Time: 167 ms

31: b:=df(q,y2);
B := K2*Y 1 + 2*K3*Y2 + K4*Y3 + Y4
Time: 167 ms

32: c:=df(q,y3);
C := K4*Y2 + 2*K5*Y3 - K6
Time: 166 ms

33: d:--df(q,y4);
D:=YI+Y2-2
Time: 150 ms

34: soive({a=0,b=0,c=0,d=0},{y 1,y2,y3,y4});

2
4*K2*K5 - 8*K3*K5 + 2'K4 - K4*K6

{{YI= ..................................................... ,
2

4*Kl*K5 - 4*K2*K5 + 4*K3*K5 - K4

8*Kl*K5 - 4*K2*K5 - K4*K6

Y2= .................................................... ,
2

4*Kl*K5 - 4*K2*K5 + 4*K3*K5 - K4

2 2
16*K l*K3*K5-4*K l'K4 +2*Kl*K4* K6-4' K2 *K5-K2*K4* K6

Y4= ......................................................................................... }}
2

4*Kl*K5 - 4*K2*K5 + 4*K.3*K5 - K4
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Time: 1400ms

After the substitution of yl to y4 into the quadratic function, the minimum is found as
follows •

35: q:=q;

2 2 2
Q:-( 16*K 1*K.3*K5-4*K l'K4 +4*K 1*K4*K6 -K 1*K6 -4"K2 *K5-2*K2*K4*K6+

2 2 2

K2*K6 -K3*K6 )/(4*Kl*K5-4*K2*_*K3*K5-K4 )
Time: 267 ms

3.2.$ Treatment of the trigonometric function

REDUCE doesn't even know an equation as simple as sin2(q)+cos2(q)=l. However

REDUCE does possess the potential to learn it. Due to this powerful capability, the

trigonometric functions can be handled easily by just teaching REDUCE the operation rules.

For example, without teaching the operation rule of trigonometry, the determinant Of direction

cosine matrix d in command 17 is as follows :

36: det(d);

2 2 2 2 2 2 2

COS(Q1) *COS(Q2) *COS(Q3) +COS(Q1) *COS(Q2) *SIN(Q3) +COS(Q1) *
2 2 2 2 9 2 2

COS(Q3) *SIN(Q2) +COS(Q1) *SIN(Q2) *SIN(Q3)'+COS(Q2) *COS(Q3) *
2 2 2 2 2 2 2

SIN(Q1) +COS(Q2) *SIN(Q1) *SIN(Q3) +COS(Q3) *SIN(Q1) *SIN(Q2) +
2 2 2

SIN(Q1) *SIN(Q2) *SIN(Q3)
Time: 483 ms

After teaching REDUCE the appropriate operation rules, the solution becomes quite

simple. Note that the time consumption in command 38 is longer than that in command 36.

This is due to the extra work needed for simplification. It also reveals the phenomenon of
internal swells.

37: let cos(ql)**2+sin(ql)**2=l,cos(q2)**2+sin(q2)**2=l,cos(q3)**2+sin(q3)**2=l.
Time: 650 ms

38: det(d);
1

Time: 584 ms
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3.2.6 Solving differential equation

REDUCE is unable to solve the differential equation directly, while MACSYMA does

possess this capability. The following example is a problem of beam deflection w(x) under

uniform load q [Figure 3.2]. The differential equation is of the form

dx 2 - s*w + r*x (x - L) (3. 1)

Where s and r ,in general, are the function of Young's modules, moment of inertial as

well as boundary conditions. In the case of small deflection with simple supported on both

end, the s becomes zero, and r=q/2EL

W

q

X

Figure 3.2 • Beam under uniform load. The boundaries are not
specified to find general solution.

The (Cn) in the following examples is the MACSYMA prompt for inputting the

command and (Dn) is the solution given by MACSYMA.

(C 1) depends(w,x);
(DI) [W(X)]

(C2) diff(w,x,2)-s*w-r*x*(x-l)=0;

2
dW

(D2) - RX(X- L) + .......... S W =0
2

dX

(C3)
Is S

P;

ode2(d2,w,x);
positive, negative, or zero?
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SQRT(S)X -SQRT(S) X
(D0)W = %K1%E + %K2 %E

2
RSX-LRS X+2R

2
S

Where the %K1 , %K2 are constants to be determined by boundary conditions. The

%E here is the symbol of exponential function.

Although the next example (no specific physical problem associated with it) is more

complex, it only takes 3.6 milliseconds in MACSYMA.

(C4) depends(y,x);
(134) W(X)I

(C5) diff(y,x,2)+(2/x)*diff(y,x)-(2/x**2)*y-( 1/x**2)*sin(log(x))=0;

(135)

dY
2 2---

d Y dX 2Y SIN(LOG(X))

2 X 2 2
dX X X

(C6) ode2(d2,y,x);

(D6)
3 SIN(LOG(X)) + COS(LOG(X)) %K2

Y= .......................................... +%K1X+ .......
10 2

X

(C7) time(d3);
Time:

(I37) [3.6d0]

3.2.7 Polynomial and rational operations

Polynomial and rational operations is one of the most important and useful functions in

symbolic and algebraic manipulation. There are two occasions in employing these functions.

First, in most cases the problems to be solved are not as simple as the above demonstrations.

Therefore it is necessary to manipulate the formulae into a machine manageable forms before

calling the appropriate REDUCE commands to solve them. Second, sometimes the solutions

are restricted to specific forms for particular usage. In order to get the appropriate forms, there

is no way to avoid employing this package. The capabilities of this package include the controls

of the expansion, factorization, and cancellation of common factors, determining the GCD of

two polynomials, obtaining the part of polynomial and rational functions, and so forth.
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%Turningoff expansionswitch.
39:off exp;

%Inputtingp andq polynomials.Thenumericalcommonfactors
%will beautomaticallyfactoredout.
40: p:=(x-1)*(5*x-3)**2*(4*x+8)^3*(9*x-6);

2 3
P := 192"(5"X - 3) *(3*X - 2)*(X + 2) *(X - 1)

41: q:=(x-1)*(5*x-3)*(4*x+8)*(x+4);
Q :=4"(5'X - 3)*(X + 4)*(X + 2)*(X - 1)

%Gettinggreatestcommondividerof pandq.
42: gcd(p,q);
4'(5"X - 3)*(X + 2)*(X - 1)

%Turningonexpansionswitchandcheckingp,q.
43:onexp;

44:p;

7 6 5 4 3 2
192"(75"X +235'X -163"X -723'X +392'X +664'X -624"X+144)

45:q;
4

4"(5'X + 22"X
3 2
- 5*X - 46"X + 24)

%Definingafractionr.
46: r.=p/q;

7 6 5 4 3 2

R :=(48'(75"X +235"X -163"X -723'X +392"X +664'X -624"X+144))/

4 3 2

(5*X +22"X -5*X -46"X+24)

%Turning on the greatest common divider switch and rechecking r.
%The common factors have been cancelled as shown in command 47.

47: on gcd;

48: r;

4 3 2

48"(15"X + 41"X - IO*X - 52'X + 24)
....................................................

X+4

%Getting the denominator and numerator of fraction r.
49: den(r);
X+4
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50: num(r);

4 3 2
48"(15"X + 41*X - lO*X - 52"X + 24)

%Gettingtheleadingdegreeof numeratorof fractionr.
51"deg(num(r),x);
4

%Thenumeratorof r in command49alsocanbefactoredasthemultiplicationsof eachfactors.52:on ifactor;

53: factorize(hum(r));
{2,2,2,2,3,X + 2,X + 2,3"X - 2,5"X - 3}

3.2.8 Fortran code output

REDUCE can automatically produce the fortran expression, natural style expression

(default), and REDUCE code. The fortran code can be made as a subroutine and be directly

input to the fortran main program. The natural style expression allows it to be looked as hand-

written form, while REDUCE code is useful in making a REDUCE subroutine for input into

the REDUCE main program. Since the results from REDUCE are generally very lengthy, the

functions of code-conversion make the switch from symbolic and algebraic manipulation to

numerical analysis smoother. This not only saves effort in symbolic and algebraic

manipulation, but also rules out all the possibilities of error introduced by hand typing. The

following examples will give a clearer understanding about these functions.

%Inputting the polynomial. The output forms are in natural style of human being writing.
54: p:=(a+b-c)**7;

7 6 6 52 5 52 43 42

P := A +7*A *B-7*A *C+21*A *B -42'A *B*C+21*A *C +35"A *B -105*A *B *C+105"

4 2 43 34 33 322 3 3 34
A *B*C -35"A *C +35"A *B -140*A *B *C +210*A *B *C -140*A *B*C +35"A *C

2 5 24 23 2 2 2 3 2 4 2 5
+21*A *B -105*A *B *C +210*A *B *C -210*A *B *C +105*A *B*C -21*A *C +7*

6 5 4 2 3 3 2 4 5 6

A*B -42*A*B *C+105*A*B *C -140*A*B *C +105*A*B *C -42*A*B*C +7*A*C

7 6 5 2 4 3 3 4 25 67
+B -7*B *C+21*B *C -35"B *C +35"B *C -21*B *C +7*B*C -C

Time: 1434 ms

%Turning on the fortran-code conversion switch.
55: on fort;
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%Checking the output of fortran code.
56: p;

ANS=A**7+7.*A**6*B-7.*A**6*C+21.*A**5*B**2.42.*A t*5*B
•*C+ 21.*A**5*C**2+35.*A**4*B**3-105.*A**4*B**2*C+ 105.
*A**4*B*C**2-35.*A**4*C**3+35.*A**3*B**4-140.*A**3*B
*'3"C+2 lO.*A**3*B**2*C**2-140.*A**3*B*C**3+35.*A**3
*C*'4+21.*A**2*B**5-105.*A**2*B**4*C+210.*A**2* B**3*C
*'2-210.*A**2*B**2*C**3+ 105.*A**2*B*C**4-21.*A**2*C
**5+7.*A*B**6-42.*A*B**5*C+ 105.*A*B**4*C**2-140.*A*B
*'3"C*'3+ 105.*A*B**2*C**4-42.*A*B*C**5+7.*A*C**6+B**
7-7.*B*'6"C+21.*B**5*C**2-35.*B**4*C**3+35.*B**3*C**
4-21.*B**2*C**5+7.*B*C**6-C**7

Time: 850 ms

%Changing the number of continuation line in fortran code.
57: cardno!*:=10$

58: p;
ANS 1=7.*A*B**6-42.*A*B**5*C+ 105.*A*B**4*C**2-140.*A*B

• *'3"C*'3+ 105.*A*B**2*C**4-42.*A*B*C**5+7.*A*C**6+B**
• 7-7.*B*'6"C+21.*B**5*C**2-35.*B**4*C**3+35.*B**3*C**
• 4-21.*B**2*C**5+7.*B*C**6-C**7

ANS=A**7+7.*A**6*B-7.*A**6*C+21.*A**5*B**2-42.*A**5*B
• *C+21.*A**5*C**2+35.*A**4* B**3-105.*A**4*B**2*C+ 105.
• *A**4*B* C*'2-35.*A*'4" C**3+35.*A**3*B**4-140.*A**3*B
• *'3"C+210.*A**3*B**2*C**2-140.*A**3*B* C*.3+35.*A*.3.
• C*'4+21.*A**2*B**5-105.*A**2*B**4*C+210.*A**2*B**3*C
• *'2-210.*A**2*B**2*C**3+ 105.*A**2*B*C**4-21.*A**2*C
• **5+ANS1

Time: 1034 ms

%Turning off fortran-code conversion switch.
59: off fort;

%Turning off the 'natural style' function switch•
60: off nat;

%Checking the output of REDUCE code.
61: p:=p;
P := A**7+7*A**6*B-7*A**

6*C+21*A**5*B**2-42*A**5*B*C+2 l*A**5*C**2+35*A**4*B**3-105'

A**4*B**2*C+105*A**4*B*C**2-35*A**4*C**3+35*A**3*B**4-140*A
**3*B**3*C+210*A**3*B**2*C**2-140*A**3*B*C**3+35*A**3*C**4+
2 l*A**2*B**5-105*A**2*B**4*C+210*A**2*B**3*C**2-2 IO*A**2*B
*'2'C*'3+ 105*A**2*B*C**4-2 l*A**2*C**5+7*A*B**6-42*A*B**5*C
+ 105*A*B**4*C**2-140*A*B**3*C**3+ 105*A*B**2*C**4-42*A*B*C**5
+7*A*C**6+B**7-7*B**6*C+21 *B**5*C**2-35*B**4*C**3+35*B**3*C
*'4-21" B**2*C**5+7*B*C**6-C**75
Time: 816 ms
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3.2.9 Number system

In addition to symbolic manipulation, the symbolic and algebraic manipulators can also

do numerical analysis. There are three ways to treat numbers in REDUCE. They are

(a) Integer --- In general, there is no practical limit on the number of digits. For example,

the value of 2 l°°° gives 255 digits. It only takes 383 milliseconds.

62: A:=2** 1000;

A: = 107150860718626732094842504_ 181056140481170553360744375038837
03 5105112493612249319837881569512759467291755314682518714528569231
40435984577598574803934567774824230985421 0746050623711418771821530
464749835819412673 987675591655439460770629145711

Time: 383 ms

(b) Fraction number --- Numbers that aren't integers and operated with symbols (or

numbers) are represented by default by the quotient of two integers with message(s)

telling users the conversion.

63: a:=0.999*b*c;

*** 0.999 represented by 999/1000
999"B*C

A :--.............

I000

Time: 200 ms

64: a:=0.999"0.5;

*** 0.999 represented by 999/1000
*** 0.5 represented by 1/2

999
A := ........

2000
Time: 217 ms

(c)Real number --- It is also possible to ask REDUCE to work the floating point

approximations to numbers with arbitrary precision with specified numbers of digit.

%Turning on the numerical mode.
65: on numval;

%Turning on the floating system switch.
66: on float;

67: pi;
3.141592653 589793d0
Time: 150 ms

68: on bigfloat;
*** Domain mode FLOAT changed to BIGFLOAT
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% Specified50digits.
69: precision505

70:pi;
3.1415926535897932384626433832795028841971693993751
Time: 217ms

3.2.10 Substitution

Therearetwo substitutionfunctionsin REDUCE.Oneis for localsubstitution,andthe

otheris for globalsubstitution.Thedifferencecanberevealedin the followingexamples.

%Definingafunctionf.
71: f:=6.*A**2*R I**2*U2-3.*ATAN(U 1/A)*A**2*

RI*R2*U 1-9.*ATAN(UI/A)*A**2*RI*R2*U2+3.*ATAN(UI/A)*A
**2*R2**2*U I+3.*ATAN(U I/A)*A**2*R2**2*U2-2.*ATAN(U 1/
A)*RI**2*U I**3+6.*ATAN(U I/A)*RI**2*U 1"'2'U25

Time: 1234ms

%makinga local substitution and calling it as B.
72: b:=sub(atan(u 1/a)=k,f);

2 2 2 2 2

B :=-(3*A *K*RI*R2*UI+9*A *K*RI*R2*U2-3*A *K'R2 *U1-3*A *K*

2 2 2 2 3 2 2

R2 *U2- 6*A *R1 *U2 + 2*KZR1 *U1 - 6*K'R1 *U1 *U2)
Time: 433 ms

%Checking the original function f after the local substitution. It's unchanged.

73: f;

U1 2 U1 2 U1 2 2

-(3*ATAN( .... )*A *RI*R2*UI+9*ATAN( .... )*A *RI*R2*U2-3*ATAN( .... )*A *R2 *U1
A A A

U1 2 2 U1 2 3 U1 2 2

-3*ATAN( .... )*A *R2 *U2+2*ATAN( .... )*R1 *UI - 6*ATAN( .... )*R1 *U1 *U2
A A A

2 2

- 6*A *R1 *U2)
Time: 367 ms

%Making global substitution.
74: let atan(ul/a)=g;
Time: 133 ms

%The original function f has been changed.
75: f;
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2 2 2 2 2 2
-(3*A *G*RI*R2*UI+9*A *G*RI*R2*U2-3*A *G'R2 *U1-3*A *G'R2 *U2

2 2 2 3 2 2
-6*A *R1 *U2 + 2*G'R1 *U1 -6*G'R1 *UI *U2)

Time: 283ms

3.2.11 Built-in functions

The built-in functions are quite system dependent. Since REDUCE is designed for

general purpose usage, there are not many built-in functions. However they can be obtained by

suitably combined commands of REDUCE. On the contrary, MACSYMA has many built-in

functions which allow users to simply call commands once to get the solution. Some of these

MACSYMA functions are shown in the following paragraphs.

(a)
Limit evaluation --- If it is necessary, the function LIMIT in MACSYMA will

automatically apply L'Hospital's rule to evaluate the formulae.

(C8)limit(sin(x)/x,x,0,plus);
(D8) 1

(C9) time(d8);
Time:

(I39) [2. 116d0]

(C 10) limit((6*x*2+3*x-4)/(x- 1),x, l,plus);
(D10) INF

(C 11) limit((1-x)**(1/x),x,0);
-1

(Dll) %E

(C 12) time(dl 1);
Time:

(DI2) [2.75d0]

(b)
Laplace transformation --- The LAPLACE command in MACSYMA can transform the

functions in physical domain, such as EXP, LOG, SIN, COS, SINH, COSH, DELTA

and ERF, into the s domain. In addition, it also can transform a differential equation

into algebraic equation. The command for inverse of Laplace transform is also
available.

(C 13) laplace( l/sqrt(t),t,s);

SQRT(%PI)
(D13) ...............

SQRT(S)
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(C14)time(dl3);
Time:
(D14) [0.05d0]

(DIS)

(C 15)laplace(((c-b)*exp(a* t)+(a-c)*exp(b* t)+(b-c)*exp(c* t))/((a-b)* (b-c)*(c-a)),t,s);

B-C A-C C-B

........ + ........ + .......

S-C S-B S-A
........................................

(A- B) (B - C) (C- A)

(C 16) time(d9);
Time:

(D16) [0.384d01

(C 17) laplace(sin(a*t)-a*t*cos(a*t),t,s);

(D17)

2
A 2S 1

.......... A( ....................... )
2 2 2 22 2 2

S +A (S +A) S +A

(C 18) time(dlT);
Time:

(D18) [0.233d0]

%Inverting the Laplace transform.
(C 19) ilt((s+6)/(s^2+4*s+ 12),s,t);

-2T

(D19) %E

(C20) time(d4);
Time:

(D20)

2 SIN(2 SQRT(2) T)
( ......................... + COS(2 SQRT(2) T))

SQRT(2)

[0.933d01

%Transforming a differential equation into algebraic equation.
(C21) laplace(diff(y(x),x,2)-3*diff(y(x),x)+2*y(x)=0,x,s);

d v

(D21) .... (Y(X)) [ - 3 (S LAPLACE(Y(X), X, S) - Y(0))
dX I

!X=0

2

+S LAPLACE(Y(X),X,S)+2 LAPLACE(Y(X),X,S)-Y(0) S=0

(C22) time(d21);
Time:
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(D22) [(3.15dOl

(C23) laplace(diff(y(x),x,2)+w^2* y(x)-b*sin(w*x)=0,x,s);

!

d ! 2 2

(D23) .... (Y(X)) ! +W LAPLACE(Y(X),X,S)+S LAPLACE(Y(X),X,S)
dX t

_X=0

BW

.......... Y(0) S - 0
2 2

W+S

(C24)
Time:

(D24)

time(d23);

[0.217d0]

(c) Series expansion --- The MACSYMA version in University of Michigan provides the

Taylor series and power series expansion capabilities. Although the function of Fourier

series expansion is available on the market, it is not available here.

(C25) taylor(%e^x,[x,0,7]);

(D25)/T/

2 3 4 5 6 7
X X X X X X

I+X+-- +--- +--- + .... + ...... + ....... +...
2 6 24 120 720 5040

(C26) time(d25);
Time:

(D26) [0.567d0]

(C27) powerseries(%e^x,x,0);
INF
=--= I1
\ X

(D27) > .....
/ Il!

I1-0

(C28) time(d27);
Time:

(D29) [0.45d0]
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CHAPTER IV

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO

AUTOMATIC PROBLEM FORMULATION

4.1 Introduction

One of the most impcx_t advantages gained from symbolic and algebraic manipulation

is to automatically formulate lengthy mathematical equations without making any errors.

Modern scientists and engineers are continually being challenged with more and more

complicated formulas. With the aid of symbolic and algebraic manipulators, most problems can

be treated easily and correctly. This chapter will demonstrate six automatic formulation

examples done by symbolic and algebraic manipulation. They are :

1. The derivation of equations of motion in dynamics.

2. Tensor formulation for the shell problem.

3. The approximation to a function by Fourier series.

4. The formulation template for the iteration method in nonlinear numerical analysis.

5. Finite element stiffness matrix and mass matrix construction for 6-node triangular
element in a heat transfer problem.

6. Finite element stiffness matrix construction for 4--node isoparametrically quadrilateral

element in a plane elasticity problem.

Of course, the use of symbolic and algebraic manipulators as tools to automatically

formulate mathematical equations can be extended to any fields. Although the methodologies

are dependent on the problem to be solved, the basic commands used in programming are
similar.
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4.2 Derivation of equation of motion

4.2.1 Introduction

by SAM

The derivation of equations of motion by the Lagrange method for the system shown in

Figure 4.1 involves finding kinetic energy T, potential energy V, and therefore the Lagrangian
L.

M,

i

Figure 4.1 • Dynamic system for demonstration of symbolic
and algebraic manipulation

The Lagrangian then is partially differentiated with respect to both generalized

coordinates and the rate of generalized coordinates. The equations of motion will be obtained

after taking the time derivatives to appropriate terms and assembling the necessary terms.

Mathematically, the Lagrange equations are expressed in the form of

where L is the Lagrangian and is defined as the difference between kinetic energy T and
potential energy V.

I . I 1 .2

T - "iM2(x + tO) 2 + _M_(rO) 2 + _IO (4.2)

V --Mtgr(l_cosO)_M2g(r_rcosO +xsin 0)+ tk(rO)2 (4.3)

4.2.2 REDUCE program and solution

1: on time;
Time: 83 ms
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%declaring theta and x as a function of time.
2: depend theta, time;
Time: 67 ms

3: depend x,time;
Time: 50 ms

%Calculating the total kinetic energy of system.
%The velocity v of body 2 need be evaluated later.

4: re:=( 1/2)*i0*(df(theta,time))**2+( I/2)*m l*r**2*(df(theta, time))**2+(I/2)*m2,v**2;

2 2 2 2
DF'(THETA,TIME) *I0 + DF(THETA,TIME) *R *M1 + M2*V

TE := ...............................................................................
2

Time: 500 ms

%Calculating the position vector of body 2.

5: P:=(r*cos(theta)-x*sin(theta))*j+(r*sin(theta)+x*cos(theta)),i;

P := COS(THETA)_'I*X+COS(THETA),J,R+SIN(THETA),I,R.SIN(THETA),.I,X
Time: 333 ms

%The velocity vectors is then obtained by taking the denvative of
%the position vector with respect to time.
6: dp:=df(p,time);

DP := COSfTHErA)*DF'(THETA,TIME)*I*R-COS(THETA), DF(THETA,
TIME)*J*X+COS(THE A)*DF(X,TIME-')*I-DF(THETA ,TIME)*
SIN(THETA) *I * X-DF'(THET A,TIME)*StN(THET A )* 2*R.DF(X,TIME)
*SIN(THETA)*J

Time: 234 ms

%Getting the magnitude square of velocity of body 2.
7: v** 2:=lcof(dp, i)**2+tcof(di:Q)**2;

2 2 2 2 2 2

V :=COS(THETA) *DF(THETA,TIME) *R +COS(THETA) *DF(THE_A,TIME)

2 2 2

*X +2*COS(THETA) *DF(THETA,TIME)*DF(X,TIME)*R+CC_(T'I-tETA) •

2 2 2 2 2

DF(X,TIME) +DF(THETA,TIME) *SIN(THETA) _*R +DF(THETA,TIME) *

2 2 2

S1N(THETA) *X +2*DF(THEI'A,TIME)*DF(X,T1ME)*SIN(THETA) *R+
2 2

DF(X,TIME) *SIN(THE--TA)
Time: 650 ms

%Teaching REDUCE the tri'gonometric rule for simplification of %formulae.
8: let (cos(them))* *2+(sin(theta))**2= 1;
Time: 150 ms
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%Inputtingthe potential energy of system.

9: ve:=-m 1* g'r*( 1-cos(theta))-m2* g*(r* ( 1-cos(theta))+x*sin(theta))+( 1/2)*k* (r* theta)**2;
VE := (2*COS(THETA)*G*R*MI+2*COS(THETA)*G*R*M2-2*SIN(THETA)

2 2

• G*M2*X- 2*G*R*M1 - 2*G*R*M2 + K*R *THETA )/2
Time: 483 ms

%calculating the Lagrangian.
10: la:=te-ve;

LA := -(2*COS(THETA)*G*R*MI+2*COS(THETA)*G*R*M2-DF(THETA,
2 2 2 2 2

TIME) *I0 - DF(THETA,TIME) *R *M1 - DF(THETA,TIME) *R
2 2

*M2 - DF(THEI'A,TIME) *M2*X -2*DF(THETA,TIME)*DF(X,TIME)
2

*R'M2 - DF(X,TIME) *M2 -2*SIN(THETA)*G*M2*X-2*G*R*M1-
2 2

2*G*R*M2+K*R *THETA )/2

Time: 617 ms

%Deriving the equation of motion for theta coordinate without
%any simplification.

11: e l:=df(df(la, df(theta, time)),time)-df(la,theta);

E1 := -(COS(THETA)*G*M2*X+DF(THETA,THETA,TIME)*DF(THETA,
2

TIME) *I0+DF(THETA,THETA,TIME)*DF(THETA,TIME)*R *M 1
2

+DF(THE'FA,THETA,TIME)*DF(THETA,TIME)*R *M2 +DF(THETA,
2

THETA,TI ME)* DF(THETA,TIME)* M2* X +DF(THETA,THETA,TI ME)
2

*DF(X,TIME)* R* M2-DF(THETA,TIME,2)*I0-DF(THETA,TIME,2)*R
2 2

*M 1-DF(THETA,TIME,2)*R *M2-DF(THETA,TIME,2)*M2*X -2*

Time:

DF(THETA,TIME) * DF(X,TI ME) * M2* X- DF(X,TI ME,2) * R* M2 +
2

SIN(THETA) *G*R*MI+SIN(THETA)*G*R*M2-K*R *THETA)
783 ms

%Deriving the equation of motion for x coordinate without simplification.
12: e2:=df(df(la, df(x,time)),time)-df(la,x)+f;

2

E2 := DF(THETA,TIME,2)*R*M2-DF(THETA,TIME) *M2*X-DF(THETA,
TIME) *DF(X,TIME,X)*R*M2-DF(X,TIME,X)*DF(X,TIME)*M2 +
DF(X,TIME,2)*M2 - SIN(THEq'A)*G*M2+F

Time: 483 ms

%Teaching REDUCE the 2nd derivative of theta w/t theta and time.is null, and so does x.
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13:let df(theta_time_theta)--__df(x_x_time)--__df(theta_theta_time)---__df(x_time_x)--_;
Time:350 ms

%turningoff theautomaticexpansionswitch.
14:off exp;
Time:50ms

%
%Startingpolynomialmanipulationto simplifytheequationsof motion.
%

%Gettingthecoefficientof angularaccelerationterm.
15:a1:=lcof(e1,df(theta,ti me,2));

2 2
A 1 := (M1 + M2)*R + I0 + M2*X
Time: 617 ms

%Getting the coefficient of sin(theta).
16: a2:=lcof(e 1,sin(theta));
A2 := - (M1 + M2)*G*R
Time: 550 ms

%Getting the leftover after taking off the above two terms.
17: a3:=e 1-a l*df(theta, time,2)-a2*sin(theta);

A3 :=-(COS(THETA)*G* M2*X-2*DF(THETA,TIME)*DF(X,TIME)*M2*X
2

-DF(X,TIME,2)*R* M2-K*R *THETA)
Time: 533 ms

%Rearranging the equation of motion for theta coordinate.
%The results are simpler than those of in command 11.

18: e 1:=al*df(theta,time,2)+a2*sin(theta)+a3;
2 2

E1 := ((MI+M2)*R +I0+M2*X )*DF(THETA,TIME,2)-(COS(THETA)*G*M2*
2

X-2* DF(THETA,TIME)*DF(X,TIME)*M2*X-DF(X,TIME,2)* R* M2.K*R
*THETA)-(M I+M2)*SIN(THETA)* G* R

Time: 400 ms

%Getting the coefficient of x acceleration term.
19: c 1:=lcof(e2,df(x,time,2));
C1 := M2
Time: 350 ms

%Getting the coefficient of angular acceleration term.
20: c2:=lcof(e2,df(theta, time,2));
C2 := R'M2
Time: 333 ms

%Getting the leftover terms by removing the above two terms.
21: c3:=e2-c l*df(x,time,2)-c2*df(theta, time,2);

2

C3 := - (DF(THE/'A,TIME) *M2*X + SIN(THETA)*G*M2 - F)
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Time:350ms

%equationof motionfor x coordinate.
22:e2:=cl*df(x,time,2)+c2*df(theta,time,2)+c3;

2
E2 := -((DF(THETA,TIME) *M2*X+SIN(THETA)*G*M2-F)-

DF(THETA,TIME,2)*R*M2 - DF(X,TIME,2)*M2)
Time:317ms

23:bye;

The examplesshownaboveare thedemonstrationof obtaining the left handside

formulaeof equation(4.1).Theequationsof motionof systemcanbesimply doneby setting

the resultsof command18and22 equal to zero.As the systemis complex, the analytical

derivationsof equationsof motion by handwill becometediousandproneto error. For the

casesof complexsystems,The applicationof symbolicandalgebraicmanipulationwill be
moresignificant.

4.3 Automatic tensor formulation for shell problem

4.3.1 Preliminary formulation

Tensors are convenient mathematical entities for concisely describing physical

situations, that are independent of coordinate transformations. Although the benefits gained by

employing tensor notation are quite significant in the related fields, the expressions of tensor

formula often rise to errors. Fortunately, this difficulty can be avoided by the use of symbolic

and algebraic manipulation. This advantage will be demonstrated by formulating the thin shell

problem in tensor form and using SAM to expand the resulting tensor equations. For the sake

of convenience, the Latin indices will be referred for the range 1, 2, 3 and the Greek indices are

in the range of 1, 2 in the following paragraph without special stress.

On the formulation of the thin shell problem, the only necessary inputs are three

parametric equations fi(u 1,u 2) of the shell middle surface. Based on parametnc equations, the

covariant metric tensor aab and its determinant are calculated

fl._.. 3___ (4.4)
aqn "/ix, Ill J ,,. 3u a 3u _

a = det (a_) (4.5)

The contravariant metric tensor is therefore given by
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Figure 4.2" Pictorically vector notations of shell

a '_ - cofactor (a,_)/a (4.6)

The first and second kind of Christoffel symbols for the surface are defined as follows

respectively"

[afl,y ] - _a,_, .p + aa, .a - a_., )

- +a -a )fly -ia ( a .r ,_ pr ,6

(4.7)

(4.8)

The covariant differentiations of a covariant vector (the 1st order tensor) and the 2nd order

tensor are therefore calculated

A p .,, " D ,_A Ij " A ¢ .a - { fl Ya } A r

f 't a { '}aA or ' *' " " A or a - fl a _r y ct t_

(4.9)

(4. 10)

When the above formulations are done, the curvature tensor and its determinant are then

computed by the formulae of
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d_ - X f_ (4.11)

d - det (d_) (4.12)

Where the X i are the unit normal vectors of the shell middle surface [see Figure 4.2] and are

equal to

X ' - a-l12e j k
,jkf.,f.2 (4.13)

Where eij k is the generalized Kronecker delta.

The strain tensor is defined as half of the difference between the deformed metric tensor

and undeformed metric tensor.

l ,

E_ - 2(a_ - a_) (4. 14)

Where the asterisk superscript is denoted as deformed state. The a*al 3 is defined as

a'_ = a_ +p,_ +p_ +prapar + qaqa (4.15)

The generalized two-dimensional displacement gradientp, and rotation q are represented as

p,_ =Dav a - d_w (4. 16)

qa - d,_v a + w.a (4.17)

Where the vct are the in-plane displacements and w is the out of plane displacement of

the middle surface of the shell. Similarly the bending tensor is equal to the difference between

the deformed curvature tensor and undeformed curvature tensor.

K¢ - d_ - d_

Z

The deformed curvature tensor d ctl3 is expressed as

a I12_.i r
d'_ ,,. (-a'7) [( +p; + O/a)(d_ + Daq,, + dtj par)

-(qP + e_e r_ qr P_)(D a Pap - d tjpqa)]

Where O =det(Pa_

The constitutive equations for isotropically elastic and thin shell are

(4.18)
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N _ , 1---_[(1_ - v)E "# + wt'_E_]

Eh 3 Y

M - 12(1- v:) [(1- v)K_ + va'_Kr]

(4.19)

(4.20)

E coWhere the Young's modules E and strain tensor shouldn't be confused here.The

final equilibrium equations are then

DaN _¢ + 2dr DoM + M D,,dr + -0

D,,D pM _ -d,_dY#M '¢ - deN '¢ -P - 0

(4.21)

(4.22)

Where the F # and P are the external forces applied in the in-plane and out-plane directions,

respectively.

4.3.2 REDUCE program and resultant expressions

The REDUCE program shown below is based on the above formulation methodology.

The explanations of the program are also included to facilitate an understanding where it is

necessary. The resultant expressions are too huge to be included here and are available in

reference [17].

ARRAY X(3),C 1(2,2,2),C2(2,2,2);
OPERATOR U,V,W,F;

MATRIX A(2,2),CONTRA(2,2),D(2,2);

% INPUTTING SURFACE PARAMETRIC FUNCTIONS
%

X(1):=U(1);
X(2):=U(2);
X(3):=CONSTANT;

%

% CALCULATING COVARIANT METRIC TENSOR & ITS DETERMINANT
%

FOR M:=l:2 DO FOR N:=l:2 DO

A(M,N): =FOR I:= 1:3 SUM DF(X(I),U(M))*DF(X(I),U(N));
DETA:=DET(A);
DEPEND W,U(1),U(2);
FOR I:=1:2 DO DEPEND V(I),U(1),U(2);

%CALCULATING CONTRAVARIANT METRIC TENSOR COMPONENT
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FORL:=l:2 DO FORM:=l:2 DO
IF L=I andM=I THEN CONTRA(L,M):=A(2,2)/DETA
ELSEIF L NEQM THEN CONTRA(L,M):=-A(M,L)/DEI"A
ELSECONTRA(L,M):=A(1,1)/DETA;

%
%CALCULATING THE 1ST CHRISTOLFFEL SYMBOL
%

FOR L:=l:2 DO FOR M:=l:2 DO FOR N:=l:2 DO

C I(L,M,N):=(1/2)*(DF(A(L,N),U(M))+DF(A(M,N),U(L))_DF(A(L,M),U(N)));

%CALCUI_,ATING THE 2ND CHRISTOLFFEL SYMBOL (SEE EQ. 4.6)

FOR L:=l:2 DO FOR M:=1:2 DO FOR N:=l:2 DO

C2(L,M,N):=FOR I:=1:2 SUM A(L,I)*CI(M,N,I);

%

%SUBROUTINE FOR CALCULATING THE COVARIANT DERI VATI VE
%FOR THE 1ST ORDER TENSOR
%

PROCEDURE COVD(L, VAR(M));

DF(VAR(M),U(L))-(FOR I:=1:2 SUM C2(I,L,M)*VAR(I));

%SUBROUTINE FOR CALCULATINE THE COVARIANT DERIVATIVE
%FOR THE 2ND ORDER TENSOR

PROCEDURE COVD2(L,FUN(M,N));

DF(FUN(M,N),U(L))-(FOR I:=1:2 SUM C2(I,L,M)*FUN(I,N))
-(FOR I:=1:2 SUM C2(I,L,N)*FUN(M,I));

MATRIX E(2,2),K(2,2),P(2,2),FF(2,3),XX( 1,3);

%

%CALCUL,ATING REL.ATIVE ALTERNATE TENSOR

%ALSO CALLED AS GENERALIZED KRONECKER DELTA
%

PROCEDURE EE(I,J,K);
IF I=J OR J=K OR K=I THEN 0
ELSE IF

(I=l AND J=2 AND K=3)
OR (I=3 AND J=l AND K=2)
OR (I=2 AND J=3 AND K=I)

THEN 1

ELSE - 1;

%CALCULATING TIlE CURVATURE TENSOR & ITS DETERMINANT
%
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FORI:=1:2DO FORJ:=1:3DO
FF(I,J):=DF(X(J),U(I));
FORI:=1:3DO
XX(1,I):=( 1/SQRT(DETA))*(FORJ:=l:3 SUM

(FOR K:=1:3SUM EE(I,J,K)*FF(1,J)*FF(2,K)));
FORI:=1:2 DO FOR 3:=1:2 DO

D(I,J):=FOR 11:=1:3 SUM XX(1,I 1)*DF(FF(I,I 1),U(J));
DETD:=DET(D);

_=====_=_

%CALCULATING THE GENERIZED DISPLACEMENT TENSOR
%

FOR L:=l:2 DO FOR M:=I:2 DO

P(L,M):=DF(V(M),U(L))-(FOR I:=1:2 SUM C2(I,L,M)*V(I))-D(L,M)*W;

%

%CALCULATING THE ROTATION TENSOR (SEE EQ. 4.17)
%

ARRAY Q(2);
FOR M:=l:2 DO

Q(M):=DF(W,U(M))+(FOR I:=1:2 SUM D(M,I)*(FOR J:=l:2 SUM CONTRA(I,J)*V(J)));

i_---=_'====."

%DERIVING THE STRAIN TENSOR
O'_ ==== = --.,,

FOR I:=1:2 DO FOR J:=l:2 DO

E(I ,J): =( 1/2)* (P(I,J)+P(J,I)

+(FOR I1:=1:2 SUM (FOR Jl:=l:2 SUM CONTRA(I 1,J1)*P(I,J1))* P(J,I 1))+Q(I)*Q(J));
OFF PERIOD;
ON FORT;
OFF PERIOD;
FOR I:=1:2 DO FOR J:=1:2 DO

WRITE " E(",I,",",J,")=",E,(I,J);

%

%CALCULATING THE ABSOLUTE 2-D ALTERNATE TENSOR
%

PROCEDURE EPS(L,M);

IF L=I AND M=2 THEN SQRT(DETA)
ELSE IF I_,=2 AND M=I THEN -SQRT(DETA)
ELSE 0;

%

%CALCULATE CONTRAVARIANT ABSOLUTE 2-D ALTERNATE TENSOR
%

PROCEDURE CEPS(L,M);
IF L=I AND M=2 THEN I/SQRT(DETA)

ELSE IF L=2 AND M=I THEN -I/SQRT(DETA)
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ELSEO;

%
%CALCULATING THE BENDINGTENSOR

O_=-'_===========_-

FOR I:=1:2 DO FOR J:=l:2 DO

<<K(I,J):=SQRT(DETA/AD)*(( I+(FOR L:=l:2 SUM CONTRA(L,L)*P(L,L))
+DET(P)/DETA)* (D(I,J)+DF(Q(I),U(J))
-(FOR I 1:=1:2 SUM C2(I 1,J,I)*Q(I 1))
+(FOR L:=l:2 SUM (FOR M:=l:2 SUM CONTRA(L,M)*D(J,M))*P(I,L)))
-(FOR L:=l:2 SUM ((FOR M:=l:2 SUM CONTRA(L,M)*Q(M))
+(FOR N:=l:2 SUM CEPS(L,N)*(FOR S:=1:2 SUM
(FOR R:= 1:2 SUM CEPS(R,S)*Q(R))*P(S,N))))*(DF(P(I,L),U(J))
-(FOR I2:= 1:2 SUM C2(I2,J,I)*P(I2,L))
-(FOR I2:=1:2 SUM C2(I2,J,L)
*P(I,I2))-D(J,L)*Q(I))))-D(I,J);

WRITE" K(",i,",",j,")=",K(I,J)>>;
DEPEND AD,U( 1),U(2);
RAD:=DET(A+2*E)$
WRITE" AD=",RAD;

%

%DERI VING THE CONSTITUTIVE EQUATIONS
%

MATRIX N(2,2),M(2,2);
FOR I:=1:2 DO FOR J:=l:2 DO

%EFFECTIVE MEMBRANE STRESS TENSOR
I_ .........................................................

<<N(I,.I):=(YE/( 1-VV**2))*(( 1-VV)*(FOR L:=1:2 SUM CONTRA(L,I)*
(FOR I1:=1:2 SUM CONTRA(I 1,J)*E(L,I 1)))+VV*CONTRA(I,J)*
(FOR L:= 1:2 SUM CONTRA(L,L)*E(L,L)));

O_ ..........................................

%EFFECTI VE MOMENT TENSOR
.........................................

M(I,J):=(YE*H**3/(12*(1-VV**2)))*((1-VV)
*(FOR L:=l:2 SUM CONTRA(L,I)*
(FOR I1:=1:2 SUM CONTRA(I 1,J)*K(L,I 1)))
+VV*CONTRA(I,J)*(FOR L:= 1:2
SUM A(L,L)*K(L,L)))>>;

%

%WRITING-OUT EXPRESSIONS OF STRESS AND MOMENT TENSOR
%

FOR I:=1:2 DO FOR J:=l:2 DO

WRITE" NC,I,",",J,")=",N(I,J);
FOR I:=1:2 DO FOR J:=l:2 DO
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WRITE " M(',I,',',J,')=',M(I,J);

_0==========:

%DERIVING THE EQUILIBRIUM EQUATIONS
(_===='---==" .mm

ARRAY Ml(2),Nl(2);
FOR I:=1:2 DO

MI(I):=FOR J:=l:2 SUM
(DF(M(I,J),U(J))+(FOR I 1:= 1:2 SUM C2(I,I 1,J)*M(I l,J))
+(FOR I 1 := 1:2 SUM C2(J,I 1,J)*M(I,I 1)));

MM:=FOR I:=1:2 SUM

(DF(M I(I),U(I))+(FOR 11:=1:2 SUM C2(I,I 1,I)*MI(I 1)));
BEQ:=MM-(FOR I 1:=1:2 SUM

(FOR I2:=1:2 SUM D(I 1,I2)*(FOR I3:=1:2 SUM

CONTRA(I2,I3)*(FOR I4:= 1:2 SUM D(I4,I3)*M(I 1,I4)))))
-(FOR I1:=1:2 SUM

(FOR I2:= 1:2 SUM D(I 1,I2)*N(I 1,I2)))-PP;
FOR I:=1:2 DO

NI(I):=FOR J:=l:2 SUM

DF(N(I,.I),U(J))+(FOR 11:=1:2 SUM C2(I,I 1,.I)*N(I 1,J))
+(FOR 11:=1:2 SUM C2(J,I 1,J)*N(I,I 1))
+2*(FOR I 1:= 1:2 SUM CONTRA(I,I 1)*

(FOR I2:= 1:2 SUM D(I2,I 1)*(DF(M(I2,J),U(J))
+(FOR I3:=1:2 SUM C2(I2,t3,J)*M(I3,J))
+(FOR I3:=1:2 SUM C2(J,I3,J)*M(I2,I3)))))-

(FOR I1:=1:2 SUM M(I 1,.I)

*(FOR I2:=1:2 SUM D(I 1,I2)*(DF(CONTRA(I,I2),U(J))
+(FOR I3:=1:2 SUM C2(I,I3,J)*CONTRA(I3,I2))
+(FOR I3:=1:2 SUM C2(I2,I3,J)*CONTRA(I,I3))))

+(FOR I2:= 1:2 SUM CONTRA(I 1,I2)*(DF(D(I 1,I2),U(J))-
(FOR I3:= 1:2 SUM C2(I3,I 1,J)*D(I3,I2))-
(FOR I3:=1:2 SUM C2(I3,I2,J)*D(I 1,I3)))))+F(I);

WRITE BEQ," =0";
FOR I:=1:2 DO WRITE NI(I)," ----0_;
BYE;

4.3.3 Remarks

The REDUCE program and solution shown above are just for the case of plates. For

the geometry other than plates, the program is easily modified by changing the input parametric

equations in the beginning of program. As the results show, the formulae of strain, bending,

stress, moment tensors and equilibrium equations are functions of three displacements and their

derivatives. Therefore we may assume three displacement fields as polynomial (or power

series, Fourier series etc.), neglect the unnecessary terms and solve the problem. Since it is out

of the scope of this report, it will be left to the interested researchers.
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4.4 Approximation of a function by Fourier series

4.4.1 Introduction

Mathematically, two functions which belong to different spaces are apparently different

in properties. It is theoretically impossible to replace one in terms of the other. However, to

approximate one by the other is feasible and is actually adopted by many engineers in various

fields. The purpose of approximation depends on the problem. It may be for avoiding the

mathematical difficulties or for simplifying the function so that it can be solved easily. Some

popular methods to approximate a function include Taylor series approximation and Fourier

series expansion etc. Since they are the approximation methods, the accuracy is up to the

number of terms included. Of course, as more terms are involved in the formulation, more

complicated expression will turn out and possibility of making errors is increased. Based on

these reasons, even though a function can be approximated theoretically, a high accuracy in

evaluation of such approximations is difficult to achieve. By the symbolic and algebraic

manipulation, the approximation can be formulated without errors and the desired accuracy can

be attained. Here, an example of Fourier series approximation to the hat function will be shown

to demonstrate the advantages of application of symbolic and algebraic manipulation.

The hat function is a fundamentals of shape function in finite element method. It is

defined as •

Ill(X) Z l+x ,for -1-:x <0(x) 1-x ,for 0,:x <- 1

Mathematically, it's a piecewise C l continuous function which certainly is different

from the sinusoidal function which is C _ continuous function within the domain they span.

The approximation to the hat function by Fourier series is expressed as

a o _ , mix, n_xf(x) - .-_-.+ a_ cost_) + b_sin (---if-) (4.23)
n-I

where the Fourier coefficients are evaluated as follows
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1 L

a 0- _fL f(x)dx

1 L

a"" ('
I L

b ,, - _f_L f (x )sin (-_----)dx

(4.24)

(4.25)

(4.26)

4.4.2 REDUCE program for generating Fourier series

The REDUCE program to generate the Fourier series and output a fortran subroutine

for hat function is shown in the follow assuming L=I.0. This program can be used to generate

Fourier series for an arbitrary function by simply changing the input function.

%

% Inputting the given function and informations.
% M : number of piecewise bounded interval.
% f(M): the function in the Mth interval.

% c(n) : the upper and lower limit of finite integration.
% 1 : half length of interval.
% k : number of Fourier series terms needed.
O_ -'----_-------_,, ._

M:=2;
K:=50;

ARRAY F(M),C(M+I);
f(1):=l+x; %c(1) =< x =< c(2)
f(2):=l-x; %c(2) =< x < c(3)
c( 1):=- 1;c(2):=0;c(3): = 1 ;
1:=(c(m+ 1)-c( 1))/2;

%

% Obtaining the Fourier series coefficients
%

a0:=for i:=l:m sum

(sub(x=c(i+l),int(f(i),x))-sub(x=c(i),int(f(i),x)))/l;
an:=for i:=l:m sum

(sub(x=c(i+ 1),int(f(i)*cos(n*pi* x/l),x))
-sub(x=c(i),int(f(i)*cos(n*pi*x/i),x)))/l;

bn:=for i:=l:m sum

(sub(x=c(i+ 1),int(f(i)* sin(n*pi*x/l),x))
-sub(x=c(i),int(f(i)*sin(n*pi* rdl),x)))/l;

on rat;
on div;

% Generating the Fourier series.
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fs:=a0/2+fori:=l:k sum
sub(n=i,an)*cos(i*pi*x/l)+sub(n=i,bn)*sin(i*pi*x/l);
off echo;
on fort;
cardno!*:=10;

%
% Outputtingthefortransubroutineof Fourierseries.
%

out "fourier.ftn";
subroutinefourier(x,fs)";
implicit real*8(a-h,o-z)";
pi=3.141592654";

write "
write "
write "
fs:=fs;
write " return";
write " end";
shut"fourier.ftn";
bye;

4.4.3 Resultant fortran subroutine from REDUCE

The following results are produced automatically from the above REDUCE program for

fifty terms Fourier series case. This subroutine can be directly input into fortran main program

without any troubles•

subroutine fourier(x,fs)

implicit real*8(a-h,o-z)
pi=3.141592654
ANS 1=4./625.* COS(25.*PI*X)* PI**(-2)+4./529.*COS(23.*

. PI *X) *PI * *(-2)+4./441. *COS(21. *PI *X)* Pl **(-2)+4./
• 361.*COS(19.*PI*X)*PI**(-2)+4./289.*COS(17.*PI*X)*PI
• **(-2)+4./225.*COS(15.*PI*X)*PI**(-2)+4./169.*COS(

13.*PI*X)*PI**(-2)+4./121.*COS( 11.* PI*X)*PI**(-2)+4./
. 81.*COS(9.*PI*X)*PI**(-2)+4./49.*COS(7.*PI*X)*PI**(-2
• )+4./25.*COS(5.* PI*X)* PI**(-2)+4./9.* COS(3.* PI* X)* PI
• **(-2)+1./2•
FS=4.*COS(PI*X)*PI**(-2)+4./2401.*COS(49.* PI*X)* PI**(
. -2)+4./2209.*COS(47.*PI*X)*PI**(-2)+4./2025.*COS(45.
. * PI*X)*PI**(-2)+4./1849.*COS(43.*PI*X)*PI**(-2)+4./

1681 .*COS(41.*PI*X)*PI**(-2)+4./1521.*COS(39.* PI*X)*
• PI**(-2)+4./1369.*COS(37.*PI*X)*PI**(-2)+4./1225.*
• COS(35.*PI*X)* PI**(-2)+4./1089.*COS(33.*PI*X)*PI**(
• -2)+4./961.*COS(31.*PI*X)*PI**(-2)+4./841.*COS(29.*
• PI*X)* PI**(-2)+4./729.*COS(27.*PI*X)*PI**(-2)+ANS 1
return
end
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Fourcurvesare plotted in the same figure for three-term, five-term, seven-term and

fifty-term cases. As the figure shows, the hat function can be actually simula_d by Fourier

series. When fifty terms are used, the difference between hat function and its Fourier series is

just invisible although they are in different spaces. This is one of the advantages of the

application of symbolic and algelzraie manipulation.

O°O

I.o o.8 o o o._l 1.0

Figure 4.3 : Convergence of Fourier series approxlmatlorl

4.$ Template for nonlinear numerical analysis

4.5.1 Introduction

In nonlinear numerical analysis, it is necessary to evaluate the Jacobian matrix and to

solve the system of equations at each iteration. Symbolically, the Newton-Raphson iteration

can be expressed as

{X }<k,. {X }'*-t'- [J]-_{F} (4.27)

Since the evaluation of the inverse of the Jacobian matrix is quite time-consuming,

equation (4.27) is traditionally changed into the following form and then is solved as a linear

system of equations at each iteration stage.

[s ]{AX}'*'-- {F} (4.28)

Although the avoidance in evaluation of the inverse of the Jacobian does expedite the

execution, it still takes time to solve a system of equations, especially for the ease of a large

number of unknowns. With the help of symbolic and algebraic manipulation, the efficiency can

be improved further.
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Insteadof transformingequation(4.27)into equation (4.28), it is rearranged into

{X }("- {X }(*-"- {AX }(*'- -[J ]-_{F} .(4.29)

The application of symbolic and algebraic manipulation to this problem is to make a

template form of the righ_handlside of equation (4.29). This includes the symbolic evaluation

of the Jacobian matrix, its inverse, and the multiplication of the matrix by load vector. The

results are then converted into fortran code for numerical analysis. The iterations are done by

simply substituting the current solutions into the template formulae toget the residuals. This

substitution is much faster than solving the system of equations. This is a new way to improve

the efficiency of program execution.

4.5.2 Preliminary formulation

The above idea is demonstrated by solving the Fermat-Weber location problem for the

case of a two-dimensional Euclidean space. Given n fixed points ,(xi, yi) , i=l,..,n, in the

plane, the object of the Fermat-Weber problem is to find the best location to minimize the total

length of the distances among the optimal location and each point. Mathematically, it is

): 2Minimize (x - x, + ( Y - Y ,) (4.30)
i-I

or rewritten in the following form

n

_l_ - ArYMinimize , ,
t-I

I1: (4.31)

where (x,y) is the coordinate of the optimal location to be found, and

(x,)C i - y,

A,-[10

Y . (xy)
0]

(4.32)

(4.33)

(4.34)

Intuitively, the minimization will be accomplished by differentiating equation (4.31)

with respect to Y and setting the results to zero. But since the objective function in equation

(4.31) is not differentiable at the exact (xi, Yi) points, a smoothing parameter e is introduced

into the object function to avoid the difficulty.
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The perturbedobjective function now becomesdifferentiable everywhereand is strictly
convex.Then ,n,"---_"= 0 will resultin afixedpointiteration

y(k.u [_w<_) A A r]-_ _wlk)A,c= , ,, ( ,) , k - 0, 1, 2 .... (4.36)

Where the weight wi(k) is defined as

(k) 1

w' " _] t : U: " (4.37,,-A Y +e 2

4.5.3 REDUCE program

Consider the specific problem which is to find the optimal location among three points

(0,1), (0,-1) and (x,0) where x varies in the range [0, oo). The REDUCE program is based on

equation (4.36).

% waa • W*A*A in equation (4.36)
% wac • W*A*C in equation (4.36)

matrix waa(2,2),wac(2,1);

waa( 1,1):= 1/sqrt(r 1)+ 1/sqrt(r2)+ 1/sqrt(r3);
waa(2,2): =waa( 1,1);

wac(1,1):=xl/sqrt(rl)+x2/sqrt(r'2)+x3/sqrt(r3);
wac(2,1):=y 1/sqrt(r 1)+y2/sqrt(r2)+y3/sqrt(r3);
wac:=( 1/waa)*wac;
on fort;
off echo;

off period;
cardno!*:=10;
out "cssa.ftn";

write " subroutine cssa(xl,yl,x2,y2,x3,y3,pu,x0,y0)";
wnte" implicit real*8(a-h,o-z)";

write" r l=(x-x l)**2+(y-y 1)**2+pu**2";
wnte" r2=(x-x2)**2+(y-y2)**2+pu**2";
wnte" r3=(x-x3)**2+(y-y3)**2+pu**2";
wnte" x=",wac(1,1);
write " y=",wac(2,1);
write " retum",
write " end";
shut "cssa.ftn";

bye;
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4.5.4 Fortran subroutine from REDUCE

The fortran subroutine produced here is applicable when the number of points is three.

The coordinates of three points are arbitrary. The perturbation parameter is an arbitrarily small

number except zero. The resultant optimal locations are plotted in Figure 4.4. with respect to

variable x3. The execution time for this problem on Apollo workstation Domain 4000 is too

small to be measured. The difference in execution time will be more significant when the size
of the problem is increased.

subroutine cssa(x 1,y 1,x2,y2,x3,y3,pu,x,y)
implicit real*8(a.h,o-z)

r l=(x-x 1)**2+(y-y 1)**2+pu**2
r2=(x-x2)**2+(y_y2)**2+pu**2
r3=(x-x3)**2+(y-y3)**2+pu**2

x=(SQRT(R2)*SQRT(RI),R3,X I+SQRT(R2)*SQRT(R1),R3,X2+

• SQRT(R3)*SQRT(R1)*R2*X 1+SQRT(R3)*SQRT(R 1),R2,X3+SQRT
• (R3)*SQRT(R2)*R 1 *X2+SQRT(R3)*SQRT(R.2)*RI*X3+R1,R2,X3

• +R l*R3*X2+R2* R3*X 1)/(2*SQRT(R2)*SQRT(R 1),R3+2,SQRT(
• R3)*SQRT(R 1)*R2+2*SQRT(R3)*SQRT(R2)*R I+R 1,R2+R 1,R3+
• R2*R3)

Y=(SQRT(R2)*SQRT(R1)*R3*Y 1+SQRT(R2)*SQRT(R 1)* R3*Y2+
• SQRT(R3)*SQRT(R1)*R2*Y I+SQRT(R3)*SQRT(R1)*R2*Y3+S

(R3)*SQRT(R2)*R1 * Y2+SQRT(R3)*SQRT(R2)*R 1*Y3+R1 *R2*QyR3T

• +RI*R.3*Y2+R2*R3*Y 1)/(2*SQRT(R2)*SQRT(R1)*R3+2*SQRT(
• R3)*SQRT(R 1)* R2+2*SQRT(R3)*SQRT(R2)*R I+R1,R2+R1,R3+
• R2*R3)
return
end

I.O

|

0.8

O.II

0,4 '

0.2

0.0
0 o.'= o.', o.'6 ,.'8

IS leeatllelb

Figure 4.4 : Behavior of optimal location vs. variable x3
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4.6 Triangular stiffness and mass matrix construction

4.6.1 Preliminary formulation

It is well known that the finite element method has become a powerful tool in solving

general engineering problems. Usually the finite element method is applied in three steps:

1. Domain discretization (pre-processing).

2. Constructing the stiffness, mass matrices and load vectors etc., then prescribing the

boundary conditions and solving them.

3. Results treatment (post-processing).

While computing stiffness and mass matrices, partial differentiation, matrix

multiplication, matrix inversion and integration are required. For a higher order interpolation,

the formulation is always very tedious and prone to introduce errors. With the aid of symbolic

and algebraic manipulation, all these troubles can be alleviated. The example shown in this

section will demonstrate the application of symbolic and algebraic manipulation to the automatic

construction of stiffness and mass matrix of six-node triangular element for a heat transfer
problem.

The stiffness K and mass M matrices are defined as follows assuming unit thickness.

K - fffr • D * BdA (4.38)

M -fN r *N *p *cpdA (4.39)

where the shape functions are

N4" 4*si *s2' N s -4 *s, *s3' N6" 4*$3 *$1'
1

t m iN l -s t ](N 6 +N 4) N 2 -s 2 - _-(N4+Ns)" N3-s 3 ](Ns+N6) (4.40)

The B matrix is evaluated by the formulae of
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n T m

ON l ON l aN t

as I as z as 3

aN 2 ON 2 aN 2

as I as 2 as 3

aN 3 aN 3 aN 3

as--V as--: 7723
ON 4 ON 4 ON 4

aS I aS 2 aS 3

aN s ON 5 aN s

as I as 2 as 3

ON 6 ON 6 ON 6

Os I Os2 Os3

bl cl ]
b2 c 2

b 3 C 3

The material property matrix D is assumed to be symmetric

The b i, c i here are expressed by global nodal coordinates.

1 1
b,- J--(y, -Y3), b2 " ")-'(Y 3-Y,), b3" 7 "(y, -Y2)

1 1 1
c,- -y-(x3 -x2), c 2- 7-(x,-x3), c_- 7-(x,-x,)

The Jacobian J is equal to

(4.41)

(4.42)

(4.43)

J " (xl - x3)(Y2 - Y3) - (Yl - Y3)(x 2 - x3) " 2" area

4.6.2 REDUCE program for stiffness matrix

MATRIX NS(6,3),NS 1(2,6),NS2(2,6),NS3(2,6),BB(2,6);
ARRAY N(6),B(3),C(3);

..................................

%Inputting the shape functions
..................................

N(4):=4'S 1"$2;
N(5):=4"$2"$3;
N(6):--4"$3'S1;

N( 1):=S 1-( 1/2)* (N(6)+N(4));
N(2):=$2-( I/2) * (N(4)+N(5));
N(3):=$3-( 1/2)*(N(5)+N(6));

(4.44)
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%C.alculate the Jacobian, area and b(i),c(i) defined in Eq.(4.43)& (4.44)

JAC:=(X l-X3)* (Y2-Y3)-(X2-X3)* (y 1 -Y3);
AREA:---JAC/2;
B( 1):=(Y2-Y3)/JAC;
B(2):=(Y3-Y 1)/JAC;
C( 1):=(X3-X2)/JAC;
C(2): =(X 1-X3)/JAC;
B(3):=-B(1)-B(2);
C(3):=-C(1)-C(2);

%Calculating B matrix defined in Eq. (4.41).

FOR M:=l:2 DO <<
FOR I:=1:6 DO <<

NS(I, 1):=DF(N(I),S 1) ;NS(I,2):=DF(N(1),S2) ;NS(I,3):=DF(N(I),S3);
IF M=I THEN BB(M,I):=FOR J:=l:3 SUM (B(J)*NS(I,J)) ELSE
BB(M,I):=FOR J:=l:3 SUM (C(J)*NS(I,J))>>>>;
FOR I:=1:2 DO <<FOR J:=l:6 DO

<<NS I(I,J):=SUB(S 1=2/3,$2= 1/6,$3= 1/6,BB(I,J));
NS2(I,J):=SUB(S 1 = 1/6,$2=2/3,$3= 1/6,BB(I,J));
NS3(I,J):=SUB(S 1= 1/6,$2= 1/6,S3=2/3,BB(I,J))>>>>;

%Given the symmetric material matrix.

MATRIX D(2,2);

D: =MAT((K 11 ,K 12),(K 12,K22));
MATRIX LO(6,6),NU(6,6),CC(6,6),SKE,(6,6);
O'_ ...................................

%Obtaining the stiffness matrix.

SKE:=(AREA/3)*(TP(NS1)*D, NS I+TP(NS2)*D*NS2+TP(NS3),D,NS3)$

%Making the appropriate substitution to simplify the final expression.

COB:=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y I+X 1*Y3-XI*Y2);
FOR I:=1:6 DO FOR J:=l:6 DO

<<LO(I,J):=DEN(SKE(I,J)) ;NU(I,.I):=NUM(SKE(I,J)) ;CC(I,j):=LO(I,J)/COB;
SKE(I,J) :=NU(I,J)/(CC(I,J)*DJ)>>;

%Outputting the resultant fortran subroutine.

ON FORT;
OFF ECHO;
OFF PERIOD;

OUT "sym";

WRITE " subroutine stiff(xl,y 1,x2,y2,x3,y3,dl 1,d12,d22,ske)";
WRITE" implicit real*8(a-h,o-z)";
WRITE" dimension ske(6,6)";

WRITE" DJ=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y I+X I*Y3-X l,Y2),;
FOR I:=1:6 DO FOR J:=l:6 DO

IF J>=I THEN WRITE "SKE(",I,",",J,")=",SKF_.(I,.I)
ELSE WRITE "SKE( ",I,",",J,")=SKE(.,J,,,,.,I ,")";
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WRITE " return";
WRITE" end";
SHUT "sym";
OFFFORT;
BYE;

4.6.3 Resultant stiffness matrix made by REDUCE

subroutine stiff(x 1,y 1,x2,y2,x3,y3,d 11 ,d 12,d22,ske)
implicit real*8(a-h,o-z)
dimension ske(6,6)

DJ=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y I+X I*Y3-X l'Y2)
SKE( 1,1)=(D 11 *Y2**2-2*D 11*Y2*Y3+D11 *Y3**2-2*D 12"X2' Y2

• +2*D12*X2*Y3+2*D12*X3*Y2-2*D12*X3*Y3+D22*X2**2_2*D22
• *X2*X3+D22*X3**2)/(2*DJ)

SKE( 1,2)=(D11*Y I*Y2-D 11*Y I*Y3-D11*Y2*Y3+D I l*Y3**2-D12
. *X I*Y2+D12*XI*Y3-D12*X2*Y I+D12*X2*Y3+D12*X3*Y l+D12*
• X3*Y2-2*D 12*X3*Y3+D22*X 1*X2-D22*X 1*X3-D22*X2*X3+D22*
• X3**2)/(6*DJ)

SKE(1,3)=-(D11*Y I*Y2-D11*Y I*Y3-D1 l*Y2**2+D1 l*Y2*Y3-
. D12*XI*Y2+D12*XI*Y3-D12*X2*Y l+2*D12*X2*Y2-D12*X2*Y3+
• D 12*X3*Y 1-D 12*X3*Y2+D22*X l*X2-D22*X l*X3-D22*X2**2+
• D22*X2*X3)/(6*DJ)

SKE(1,4)=-(2*(D11*Y I*Y2-D11*Y I*Y3-D11*Y2*Y3+D11.Y3..2
• -D12*XI*Y2+D 12*X I*Y3-D12*X2*Y I+D12*X2*Y3+D12*X3*Y I+
. D 12*X3*Y2-2*D 12*X3*Y3+D22*X l*X2-D22*Xl*X3-D22*X2*X3+
• D22*X3**2))/(3*DJ)
SKE(1,5)=0
SKE( 1,6)=(2"(D 11' Y 1*Y2-D 11*Y I*Y3-D 11 *Y2**2+D 11' Y2*Y3-
• D12*XI*Y2+D12*XI*Y3-D12*X2*Y l+2*D12*X2*Y2-D12*X2*Y3+
• D12*X.3*Y 1-D12*X3*Y2+D22*Xl*X2-D22*Xl*X3-D22*X2**2+
• D22*X2*X3))/(3*DJ)
SKE(2,1)=SKE(1,2)

SKE(2,2)=(D 11*Y 1"'2-2"D 11*Y I*Y3+D1 l*Y3**2-2*D12*Xl*Y 1
• +2*D 12*X 1 *Y3+2*D 12*X3*Y 1-2' D 12'X3' Y3+D22*X 1*'2-2" D22
• *X 1*X3+D22*X3**2)/(2*DJ)
SKE(2,3)=(D 11*Y l**2-D 11*Y I*Y2-D11*Y I*Y3+D1 l*Y2*Y3-2*
• D 12*X 1*Y 1+D 12*X 1*Y2+D 12* X 1*Y3+D 12* X2* Y 1-D 12*X2*Y3+
• D 12*X3*Y 1-D 12"X3" Y2+D22*X 1**2-D22*X 1 *X2-D22* X 1*X3+
• D22*X2*X3)/(6*DJ)

SKE(2,4)=-(2*(D 11*Y I*Y2-D11*Y I*Y3-D11*Y2*Y3+D 11"Y3"'2
• -D 12*X I*Y2+D 12*X I*Y3-D 12*X2*Y I+D 12*X2*Y3+D 12*X3*Y 1+
• D12*X3*Y2-2*D12*X3*Y3+D22.X l*X2-D22*Xl*X3-D22*X2.X3+
• D22*X3**2))/(3*DJ)

SKE(2,5)=-(2*(D 11 *Y 1**2-D 1 I*Y 1*Y2-D 11 *Y I *Y3+D 11 *Y2*Y3
• -2*D12*XI*Y I+D12*XI*Y2+D12*XI*Y3+D12*X2*Y 1-D12*X2*Y3
• +D 12*X3*Y 1-D 12*X3*Y2+D22*X 1**2-D22*X 1*X2-D22*X 1* X3+
• D22*X2*X3))/(3*DJ)
SKE(2,6)=0

SKE(3,1)=SKE(I,3)
SKE(3,2)=SKE(2,3)
SKE(3,3)=(D 11*Y 1** 2-2'D 11 * Y l *Y2+D 11 *Y2**2-2*D 12* X 1* Y 1

• +2*D 12*X 1*Y2+2*D12*X2*Y 1-2' D12*X2*Y2+D22*X 1*'2-2" D22
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• *X l*X2+D22*X2**2)/(2*DJ)
SKE(3,4)=0

SKE(3,5)=-(2" (D 11*Y 1**2-D 11*Y I*Y2-D 11*Y 1*Y3+D 11 *Y2*Y3

• -2*D12*XI*Y I+D12*XI*Y2+D12*XI*Y3+D12*X2*Y 1-D12*X2*Y3
• +D12*X3*Y 1-D12*X3*Y2+D22*Xl**2-D22*X l*X2-D22*X1,X3+
• D22*X2*X.3))/(3*DJ)

SKE(3,6)=(2*(D 11 *Y 1*Y2-D 11 *Y 1*Y3-D 11 *Y2**2+D 1 l*Y2*Y3-
• D12*XI*Y2+DI2*X I*Y3-D12*X2*Y l+2*D12*X2*Y2-DI2,X2,Y3+
• D 12*X3*Y 1- D 12*X3*Y 2+D22*X 1*X2-D22*X 1* X3-D22*X2**2+
• D22*X2*X3))/(3*DJ)
SKE(4,1)=SKE( 1,4)

SKE(4,2)=SKE(2,4)
SKE(4,3)=SKE(3,4)

SKE(4,4)=(4*(D 11*Y l**2-D 11*Y I*Y2-D 11*Y I*Y3+D11"Y2"'2-
. DI I*Y2*Y3+D11*Y3**2-2*D12*XI*YI+D12*XI*Y2+D12*XI,Y3+
. D 12*X2*Y 1-2*D 12*X2*Y2+D12*X2*Y3+D12*X3*Y l+DI2*X3*Y2-
• 2*D 12"X3" Y3+D22*X l**2-D22*X 1*X2-D22*X 1*X3+D22*X2**2-
• D22*X2*X3+D22*X3**2))/(3*DJ)

SKE(4,5)=(4*(D1 I*Y I*Y2-D11*Y I*Y3-D 1l*Y2**2+D 1 l*Y2*Y3-
• D12*XI*Y2+D12*XI*Y3-D12*X2*Y I+2*D12*X2*Y2-DI2*X2*Y3+
• D12*X3*Y 1-D12*X3*Y2+D22*Xl*X2-D22*Xl*X3-D22,X2**2+
• D22*X2*X3))/(3*DJ)

SKE(4,6)=-(4*(D 11*Y l**2-D11*Y I*Y2-D11*Y I*Y3+D1 l*Y2*Y3
• -2*D 12*X I*Y 1+D 12*X 1 *Y2+D 12*X 1*Y3+D 12*X2*Y 1-D 12*X2*Y3
• +D 12"X3" Y 1-D 12*X3*Y2+D22*X 1**2-D22*X 1*X2-D22*X l'X3+
• D22*X2*X3))/(3*DJ)
SKE(5,1)=SKE(1,5)
SKE(5,2)=SKE(2,5)
SKE(5,3)=SKE(3,5)
SKE(5,4)=SKE(4,5)

SKE(5,5)=(4*(D11*Y l**2-D11*Y I*Y2-D11*Y I*Y3+D11"Y2"'2-
• DI I*Y2*Y3+D1 l*Y3**2-2*D12*Xl*Y I+D12*XI*Y2+D12*XI*Y3+
• D 12*X2*Y I-2*D 12*X2*Y2+D 12*X2*Y3+D 12*X3*Y l+DI2*X3*Y2-
• 2* D 12*X3*Y3+D22*X 1" *2-D22*X 1*X2-D22*X 1*X3+D22*X2**2-
• D22*X2*X3+D22*X3**2))/(3*DJ)

SKE(5,6)=-(4*(D 11*Y I*Y2-D11*Y I*Y3-DI I*Y2*Y3+D11"Y3"'2
• -D 12*X I*Y2+D 12*X I*Y3-D 12*X2*Y I+D 12*X2*Y3+D 12*X3*Y 1+

• D 12*X3*Y2-2*D 12*X3*Y3+D22*X l*X2-D22*Xl*X3.D22,X2,X3+
• D22*X3**2))/(3*DJ)
SKE(6, I)=SKE(1,6)

SKE(6,2)=SKE(2,6)
SKE(6,3)=SKE(3,6)
SKE(6,4)=SKE(4,6)
SKE(6,5)=SKE(5,6)
SKE(6,6)=(4*(D11*Y l**2-DI I*Y I*Y2-D11*Y I*Y3+DI 1"Y2"'2-

• D11*Y2*Y3+D11*Y3**2-2*D12*Xl*Y I+D12*XI*Y2+DI2*XI*Y3+
• D 12*X2*Y 1-2*D 12*X2*Y2+D 12*X2*Y3+D 12*X3*Y l+DI2*X3_y2-
• 2*D 12*X3*Y3+D22*X l**2-D22*X l*X2-D22*X l*X3+D22,X2**2.
• D22*X2*X3 +D22" X3**2))/(3*DJ)
return
end
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4.6.4 REDUCE program for mass matrix

MATRIX N( 1,6),SQN(6,6),NS(6,6),DMASS(6,6),SDIF(6,6);
N:=MAT((N1 ,N2,N3,N4,N5,N6));

% Calculating the integmnd.

SQN:=TP(N)*N;

% Inputting shape functions

N4:=4"S 1"$2;
N5: =4* $2" $3;
N6: =4" $3" S 1;

N I:=S 1-(1/2)*(N6+N4);
N2:=S2-(1/2)*(N4+N5);
N3:=$3-( 1/2)*(N5+N6);

% Evaluating the integration.

LET $3=1-S1-$2;
FOR I:=1:6 DO FOR 3:=1:6 DO IF I<=.I THEN <<

A: =I NT(SQN(1,3),$2);B:=S UB(S2= 1-S 1,A)- SUB (S2=0,A);
C:=I NT(B,S 1);NS(I,J):=SUB(S 1= 1 ,C)-S UB(S 1=0,C)>>
ELSE NS(I,J):=NS(J,I);

% Outputting the results.

ON FORT;
OFF ECHO;
OFF PERI OD;
OUT "mass.ftn";

WRITE " SUBROUTINE MASS(X 1,Y 1,X2,Y2,X3,Y3,RO,CP, DMASS)";
WRITE" IMPLICIT REAL*8(A-H,O-Z)";
WRITE" DIMENSION DMASS(6,6)";

WRITE" AREA=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y 1+X I*Y3-X 1,Y2)/2,;
DMASS: =RO*CP* 2* AREA* NS;
WRITE " RETURN";
WRITE" END";
SHUT "mass.ftn";

% checking the correctness of results.
..........................................

OFF FORT; OUT "CHECK";

R:=FOR I:=1:6 SUM <<FOR J:=l:6 SUM DMASS(I,J)>>;
SDIF:=DMASS-TP(DMASS); SHUT "CHECK";
BYE;

4.6.5 Fortran results of mass matrix

SUBROUTINE MASS(X 1,Y 1,X2,Y2,X3,Y3,RO,CP, DMASS)
IMPLICIT REAL*8(A-H,O-Z)
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DIMENSION DMASS(6,6)
AREA=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y l+X 1*Y3-X 1*Y2)/2
DMASS(1,1)=(AREA*CP*RO)/30
DMASS(1,2)=-(AREA*CP*RO)/180
DMASS(1,3)=-(AREA*CP*RO)/180
DMASS(1,4)=0
DMASS(1,:5)=-(ARF_*CP*RO)/45
DMASS( 1,6)=0
DMASS(2,1)=-(AREA*CP*RO)/180
DMASS(2,2)=(AREA*CP* RO)/30
DMASS(2,3)=-(AREA*CP*RO)/180
DMASS(2,4)=0
DMASS(2,5)=0
DMASS(2,6)=-(AREA*CP* RO)/45
DMASS(3,1)=-(AREA* CP*RO)/180
DMASS(3,2)=-(AREA*CP*RO)/180
DMASS(3,3)=(AREA* CP*RO)/30
DMASS(3,4)=-(AREA*CP*RO)/45
DMASS(3,5)=0
DMASS(3,6)=0
DMASS(4,1)=0
DMASS(4,2)=0
DMASS(4,3)=-(AREA*CP*RO)/45
DMASS(4,4)=(8*AREA*CP*RO)/45
DMASS(4,5)=(4*AREA*CP* RO)/45
DMASS(4,6)=(4*AREA*CP* RO)/45
DMASS(5, I)=-(AREA*CP*RO)145
DMASS(5,2)=0
DMASS(5.3)=0
DMASS(5,4)=(4*AREA*CP*RO)145
DMASS(5,5)=(8*AREA*CP*RO)/45
DMASS(5,6)=(4*AREA*CP*RO)/45
DMASS(6,1)=0
DMASS(6,2)=-(AREA*CP* RO)/45
DMASS(6,3)=0

DMASS(6,4)=(4*AREA*CP*RO)/45
DMASS(6,5)=(4*AREA*CP*RO)/45
DMASS(6,6)=(8*AREA*CP*RO)/45
RETURN
END

4.6.6 Checking correctness of results

In some cases, the results from REDUCE are lengthy as the stiffness matrix shown

above. It is very important to find a way to check their correctness. In general, a small problem

with a known solution is used to test the correctness of a symbolic program before application

to actual problems. In addition, some specific checking procedures are also available in each

individual field. They require a knowledge of the specific field. Takin$ the mass matrix

problem above as an example, the summation of the entries of the mass matrix should be equal

to unit multiplied by the accessory constants. The symmetry of mass matrix is proven by
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subtractingthe massmatrix from its transposeto get zerosfor eachentries.The REDUCE

programto checkcorrectnessis appendedin the programshownin subsection4.6.4. The

following resultsinclude two parts.The first R is the summationof eachentriesof mass

matrix. The secondSDIF(i.j) are the differenceof massmatrix and its transpose.These
checkingresultsconfirmthecorrectnessof REDUCEprogram.

0"_ ...............................................................................

% Checking the correctness of mass matrix by summing each entries
% of mass matrix to make an unit multiplied by accessory constants
i_ ...............................................................................

R := AREA*CP*RO
I_ .............................................................................

% Checking the symmetry of mass matrix by finding the difference
% between mass matrix and its transpose.
O_ .............................................................................

SDIF(1,1) := 0
SDIF(1,2) := 0
SDIF(1,3) := 0
SDIF(I,4) := 0
SDIF(1,5) := 0
SDIF(1,6) := 0
SDIF(2,1) := 0
SDIF(2,2) := 0
SDIF(2,3) := 0

SDIF(2,4) := 0
SDIF(2,5) := 0
SDIF(2,6) := 0
SDIF(3,1) := 0
SDIF(3,2) := 0
SDIF(3,3) := 0

J

SDIF(3,4) := 0
SDIF(3,5) := 0
SDIF(3,6) := 0
SDIF(4,1) := 0
SDIF(4,2) := 0

SDIF(4,3) := 0
SDIF(4,4) := 0
SDIF(4,5) := 0
SDIF(4,6) := 0
SDIF(5,1) := 0
SDIF(5,2) := 0
SDIF(5,3) := 0
SDIF(5,4) := 0
SDIF(5,5) := 0
SDIF(5,6) := 0

SDIF(6,1) := 0
SDIF(6,2) := 0
SDIF(6,3) := 0
SDIF(6,4) := 0
SDIF(6,5) := 0
SDIF(6,6) := 0
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4.7 Closed form solution of stiffness matrix of four-node element

4.7.1 Introduction

Although the methodology to construct the stiffness matrix of four-node isoparametric

quadrilateral element for the plane elasticity problem is the same as that of the triangular element

shown in last section, the techniques are quite different from each other. In the triangular

element, the Jacobian determinant is constant and therefore the integration is straightforward.

However the same advantage can't be gained for the isoparametric quadrilateral element. In

general, the determinant of the Jacobian is a function of the natural coordinates. Having the of

Jacobian determinant in the denominator of the integrand due to the coordinate transformation

produces a tremendous difficulty in performing integration analytically, therefore the numerical

Gauss quadrature rule is usually introduced to solve this problem. The discussions of this

difficulty and the introduction of Gauss quadrature rule can be found in most relevant

literatures, such as Zienkiewicz [10], Becker & Carey & Oden [11], Cook [12], Reddy [13],

Huebner [14], Weaver & Johnson [15].

The inability to perform analytic integration introduces the integration error in the finite

element results. The following paragraphs will show that this difficulty has been overcome and

the exact closed-form solution has been obtained by appropriate application of REDUCE [8].

4.7.2 Preliminary formulation

The local stiffness matrix for a 2-D isoparametric quadrilateral element is formulated by

1 1

g - • E • B,t, Isl dO (4.45)

Vdhere

• K" local stiffness matrix.

• E' material property matrix.

• IJI • determinant of Jacobian matrix.

• _, r I • natural coordinates.

• t" thickness of element.
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• B ' strain-displacement matrix.

In general, each entry of strain-displacement matrix B is a function of _, Vl, IJIand can

be expressed as :

b,_(_,'O, lJI)- c° +c,_: +c2_? + c3_'_Igl (4.46)

Where

° bij" are denoted by the entry in ith row and'jth column of matrix B

• c i : are constants.

For simplicity, the material property matrix E and the thickness t are assumed to be

independent of natural coordinates. The integrand in equation (4.45) therefore will be function

of _, rI and IJI, too. The entry of integrand can be expressed specifically as :

g,j(_,n,IJI) = a°+a'_ +a,o +a3_'+ a,_ +ash" +a6_20 +a,_o _+a,_'o" (4.47)Igl

Where d 1, d2,. .... d8 are constants, too.

The Jacobian J is

[; 1I 1J, _ m JIt Jr:
" Jzl Jz2

(4.48)

And the global coordinate variables x, y can be transformed to local coordinate by the same

shape functions as those of field variables. This is an intrinsic property of an isoparametric

element.

4 4

x - , y-2N, y,
i -1 _ -1

(4.49)

Where

• xi' Yi " are global node coordinates.
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• N i • shape functions.

Specifically, the individual shape functions are

N, - 42-(1- _)(1 - 1,/)

N 2- _(1 + _)(1- r/)

N 3 - 4L(l + _)(1 + r/)

N 4- _(1 - _)(1 + r/)

(4.50)

(4.51)

(4.52)

(4.53)

and the entries of Jacobian are derived from equations (4.48) to (4.53).

_X r/

Jll " _ -_'(x03_ i -x2 + x3 - x4)+ _(-xl+x2+x3-x4)-a,,r I +b_,

J_2" d_ ''J'(Yl Y2+Y3-Y4)+_-YI+Y2+y_-y4)..ayr I +by

ox
J,l" "_-" (xm-x2+ Xn- X4)+';(-x,-x2+x3+x4),,a, _ +c,,

J,2" O"_'' "4-'(Y,- Ya + Y,-Y4) + t4-'(-Y,-Y, + Y3 + Y4)-a_,_ +cy

(4.54)

(4.55)

(4.56)

(4.57)

Therefore, the determinant of the Jacobian will be

IJ I- J,,J22 - J,2J2,

•- (b,,ay - axby)_ + (axCy - ayc,,)r I + (bxcy + b

- U_ + V rI + W

yc,) (4.58)

where U, V, W are independent of natural coordinates.

Obviously, the determinant of the Jacobian is only a linear function of natural

coordinates. This linearity allows the exact integration to be performed and the logarithm

function is expected in the solution. As the first integration with respect to x is done, there is no

longer an integration variables h in the denominator. Therefore the second integration with

respect to h can also be performed analytically. However, the algebraic operations to finish

these two integrations axe too tedious to be handled by hand. Fortunately, with the help of the

symbolic and algebraic manipulator REDUCE, these mathematical operations can be done by

computer. In addition, the solutions can be organized in a systematic way and converted into a

FORTRAN-code subroutine to be called by the main program. All of these procedures and

parts of solutions are demonstrated in the next paragraphs by an example of linear elasticity.

The explanations of commands and the time consumed in each individual command are also
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commentedfor reference.The total timeconsumedin thisexecutionby REDUCE is around
two and half hours.The resultantfortranexpressionsfor just anelementof stiffnessmatrix

occupy almost sixteenpages.Thesehugeexpressionsare the reasonwhy the closedform
solutionwasnotavailablebefore.

4.7.3 REDUCE program and explanation

O'_ .......................................

% Turning on the CPU elapse time.
O'_ .......................................

1: on time;
Time: 133 ms
I_ .....................................

% Inputting 4 shape functions.

% p and q are natural coordinates.
%p:xi
%q: eta
i_ .....................................

2: s 1:=( l-p)*( l-q)/4;

P'Q-P-Q+ 1
S1 := ....................

4
Time: 600 ms

3: s2:=(l+p)*(1-q)/4;

P'Q- p + Q - 1
S2 := ........................

4

Time: 167 ms

4: s3:=( l+p)*( l+q)/4;

P*Q+P+Q+ 1
$3 := ........................

4
Time: 167 ms

5: s4:=(1-p)*(l+q)/4;

P*Q+P- Q- 1
S4 := .......................

4
Time: 166 ms

% Expressing x & y by shape function
% and global node coordinates.
1_ ................................... ... .....
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6: x:=sl*x l+s2*x2+s3*x3+s4*x4;
X := (P*Q*X 1-P*Q*X2+P*Q*X3-P*Q*X4-P*XI+P*X2+P*X3-P*X4-

Q*X 1-QzX2+Q*X3+Q*X4+X1+X2+X3+X4)/4
Time: 400ms

7: y:=sl*y l+s2*y2+s3*y3+s4*y4;
Y := (P*Q*Y 1-P*Q*Y2+P*Q*Y3-P*Q*Y4-P*YI+P*Y2+P*Y3-P*Y4-

Q*Y 1-Q*Y2+Q*Y3+Q*Y4+yl+Y2+Y3+Y4)/4
Time: 267ms

% DeclaringandInputtingmatrix elements to calculate the strain-displacement matrix B.
% c : coefficient matrix

% jac : combination of Jacobian matrix

% sd : matrix containing the derivative of shape function.
% b : strain-displacement matrix.
% detj : determinant of Jacobian.
% j 11 ,j 12,j21,j22 : element of Jacobian matrix.
I_ ......................................................................... . .............................

8: matrix c(3,4),jac(4,4),sd(4,8),b(3,8)$
Time: 550 ms

9: c: =mat(( 1,0,0,0),(0,0,0,1),(0,1,1,0))$
Time: 183 ms

10: jac: =mat((j22,-j 12,0,0),(-j21,j 11,0,0),
(0,0,j22,-j 12),(0,0,-j21,j I 1))$

Time: 284 ms

11: sd:=mat((df(s 1,p),0,df(s2,p),0,df(s3,p),0,df(s4,p),0),
(df(sl,q),0,df(s2,q),0,df(s3,q),0,df(s4,q),0),
(0,df(sl,p),0,df(s2,p),0,df(s3,p),0,df(s4,p)),
(0,df(sl,q),0,df(s2,q),0,df(s3,q),0,df(s4,q)))$

Time: 833 ms

12: b:=c*jac*sd/detj$
Time: 417 ms

% Inputting material matrix D and calculating integrand.
% D : material matrix (assumed symmetric).
% Ga : integrand.
% th : thickness of element.
O'_ ............................ . ..................................

13: matrix d(3,3),ga(8,8);
Time: 316 ms

14: d: =mat((e 11 ,e 12,e 13),(e 12,e22,e23),(e 13,e23,e33))$
Time: 200 ms

15: ga:=tp(b)*d* b* th*detj$
Time: 8067 ms
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% Evaluating each element of Jacobian.
I_ ............................................

16: on factor;
Time: 150 ms

17: on div;
Time: 33 ms

18: on rat;
Time: 50 ms

19: j 1 l:=df(x,p);
1

Jl 1 := ---*((X1 - X2 + X3 - X4)*Q - X1 + X2 + X3 - X4)
4

Time: 750 ms

20: j 12:=df(y,p);
1

J12 :=---*((Y1 - Y2 + Y3- Y4)*Q- Y1 + Y2+Y3-Y4)
4

Time: 550 ms

21: j21:=df(x,q);
1

J21 := .... *((X1 + X2 - X3 - X4) - (X1 - X2 + X3 - X4)*P)
4

Time: 667 ms

22: j22:=df(y,q);
1

J22 := .... *((Y 1 + Y2 - Y3 - Y4) - (Y 1 - Y2 + Y3 - Y4)*P)
4

Time: 650 ms

O'_ ................ '. ......................................

%Making substitution for Jacobian matrix.
% ax=(x 1-x2+x3-x4)/4, bx=(-x 1+x2+x3-x4)/4

% ay=(y 1-y2+y3-y4)/4, by=(-y l+y2+y3-y4)/4
% cx=(-x 1,x2+x3+x4)/4, cy=(-y l-y2+y3+y4)/4

........................................................

23: j 1 l:=ax*q+bx;
Jll := AX*Q+ BX
Time: 333 ms

24: j 12:=ay*q+by;
J12:=AY*Q+ BY
Time: 117 ms

25: j21:=ax*p+cx;
J21 := AX*P+ CX
Time: 117 ms
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26:j22:=ay*p+cy;
J22:= AY*P + CY
Time: 116 ms

%Calculating the determinant of Jacobian.

27: matrix j(2,2),ske(8,8);
Time: 200 ms

28: j :=mat(tj 11,j 12),(j21,j22));
J(1,1) := AX*Q+ BX
J(1,2) := AY*Q + BY
J(2,1) := AX*P+ CX
J(2,2) := AY*P + CY
Time: 367 ms

29: detj:=det(j);

DETJ := - ((AX*P + CX)*(AY*Q + BY) - (AX*Q + BX)*(AY*P + CY))
Time: 333 ms

%Making a further substitution and giving the lineality of determinanL

30: let-ax*cy+ay*cx=al,ax*by-ay*bx=a2,-bx*cy+by*cx-_.a3;
Time: 450 ms

31: detj:--detj;
DETJ := - (AI*Q + A2*P+ A3)
Time: 450 ms

32: on exp;
Time: 50 ms

%Performing the double integration.

%Due to the complication of the expression in the integrand, it is necessary to make the "pre-
%treatment" to each element of integrand before integration. This is a vital step to avoid the
%limitation of memory space and finish the job.

33: for i:=1:8 do forj:=l:8 do
ifj>=i then

<<cp: =coeff(ga(i,j),p);
p0:=(first cp);

p 1:=(second cp);
p2: =(third cp);
low:=den(ga(i,j));
ga(i,j):=(d0+dl*p+d2=p**2)/low;
cl:=int(ga(i,j),p);
c2:=sub(p=l,cl)-sub(p=- l,cl);

c3:=sub(d0=-p0*low,dl=pl=low,d2=p2*low,c2);
c4:=sub(Iog(al *q-a2+a3)=mlog,log(a I *q+a2+a3)=plog,c2,);
on exp;
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cq:=coeff(c4,q);
q0:=(first cq);
q 1:=(second cq);
q2:=(third cq);
kO 1:=lcof(num(q0), mlog)/den(q0);
q0:=reduct(num(qO),mlog)/den(q0);
k02: =lcof(nu m(q0),plog)/den(q0);
k03:=reduct(num(q0),plog)/den(q0);
kO4:=lcof(num(q 1),mlog)/den(q 1);
q 1:=reduct(num(q 1),mlog)/den(q 1);
k05:=lcof(num(q 1),plog)/den(ql);
k06:=reduct(num(q 1),plog)/den(ql);
kO7:=icof(num(q2),mlog)/den(q2);
q2:=reduct(num(q2),mlog)/den(q2);
k08:=lcof(num(q2),plog)/den(q2);
k09:=reduct(num(q2),plog)/den(q2);
c4: = dO 1*log(a 1*q-a2+a3) +d02* Iog(a 1* q+a2+a3)+d03

+d04* q* iog(a 1*q-a2+a3)+d05* q* log(a 1*q+a2+a3) +d06* q
+d07*q** 2*log(a l*q-a2+a3)+d08*q**2*log(al *q+a2+a3)
+d09*q**2;

c5:=int(c4,q);
c6:=sub(q= 1,c5)-sub(q=- 1,c5);
let log(a 1**2-a 1*a2+a 1*a3)=h 1,log(-a 1* *2-a 1*a2+a I *a3) =h2,

log(a l+a2+a3)=h3,1og(-a 1+a2+a3)=h4,1og(a l-a2+a3)=h5,
log(-al-a2+a3)=h6;

factor h 1,h2,h3,h4,h5,h6;

ske(i,j):=sub(d01=k01,d02=k02,d03=k03,d04=k04,d05=k05
,d06=k06,d07=k07,d08=k08,d09=k09,c6)>>

else ske(i,j):=ske(j,i);
Time: 234766 ms

%Showing the results for the element in 1st row and 1st column of the local stiffness matrix.
%H l=log(al**2-a l*a2+a l'a3), H2=log(-a l**2-a l*a2+al*a3)
%H3=log(a 1+a2+a3) , H4=log(-a l+a2+a3)
%HS=log(al-a2+a3) , H6=log(-a 1-a2+a3)

...........................................................................................................

34: ske:=ske;

1 -1 1 -1

SKE(1,1) := HI*TH*(---*A1 *A2*E13 .... *A1
8 8

-1 2
*A2 *A3 *El3 +

1 -1 -1 2 1 -1 -1
.... *AI *A2 *A3*BX *E33 .... *A1 *A2 *A3*BX*BY*E13
16 8

1 -2 2 1

........................... + .... *A2 *A3 *El3+ .... *El3)
16 16

1 2 -2 1 2 -3

+ H6*TH*( .... *AI *A2 *El3 + .... *AI *A2
16 48
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1 1 -1 1 -I
................. + .... *EI3)+TH*( .... *AI*A2 *EI3+---*AI *A2*E13+

16 4 4

1 -2 1 -2 2

.... *A2 *A3*BX*BY*EI3+---*A2 *A3*BY *Ell)
3 6

Time: 79317 ms

4.7.4 Fortran subroutine from REDUCE

%Converting the results into FORTRAN code

subrou ti ne(x 1,y I ,x 2,y2,x3 ,y3 ,x4,y4,e I ,e2,e3 ,e4,e5,e6,th,ske)
implicit real*8(a-h,o-z)
dimension ske(8,8)
ax=(x 1-x2+x3-x4)/4.
bx=(-x 1+x2+x3-x4)/4.
ay=(y 1-y2+y3-y4)/4,
by=( - y 1+ y2+y3- y4)/4.
cx=(-x 1-x2+x3+x4)/4.
cy=(-yl-y2+y3+y4)14.
al=-ax*cy+ay*cx
a2=ax*by-ay*bx
a3=-bx*cy+by*cx
h 1--log(a I ** 2-a I *a2+a I * a3)
h2=log(-al **2-a l*a2+a l'a3)
h3=log(al+a2+a3)
h4=log(-al+a2+a3)
hS=log(a l-a2+a3)
h6=log(-al-a2+a3)
ANS 14= I/4*A 1**(-3)*A3**2*Ay*CX*E 13- ltS*A 1"*(-3)*A3"*2
• *AY*CY*EI 1-1/16*A 1**(-3)*A3**2*CX**2*E33+ I/8*A 1_¢*(-3
• )*A3**2*CX*CY*EI3-1/16*A I**(-3)*A3**2*CY**2tE1 l-lJ16
• *A2**(-2)*A3**2*E13+ 1/16*E 13

ANS I=H I*TH*ANS2

ANS28=- I/4*A 1**(-3)*A3**2*AY*CX*EI3+ I/8*A I z* (-3)*A3"*
• 2*AY*CY*E11+ 1/16*A I**(-3)*A3**2*CX**2*E33- l/8*A 1"*(
• -3)*A3**2*CX*CY*E13+I/16*A 1**(-3)*A3**2*CY**2*E 11+ 1/

16*A2**(-2)*A3**2*E13-1/16'E13

ANS 15=H2*TH*ANS 16

A NS48= 1/8*A2**(-3)*A3**2*BX*BY*E 13- I116*A2**(-3)*A3**
• 2*BY**2*E11

ANS29=-H3*TH*ANS30

A NS68=- 1116*A2**(-3)*A3**2*BX**2*E33+ 1/8*A2**(-3)*A3
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**2*BX*BY*E13-1/16*A2**(-3)*A3**2*BY**2*E11

Al'_S49=-H4*TH*ANS50
ANS75=1/16*A2**(-3)*A3**2*AX**2*E33-1/8"A2"* (-3)*A3"*
• 2*AX*AY*E13+ 1/8*A2**(-3)*A3**2*AX*BX*E33+ 1/16"A2"*(
• -3)*A3**2*AY**2*E11-1/4*A2**(-3)*A3**2*AY*BX*E13+l/8
• *A2**(-3)*A3**2*AY*BY*E1 l+I/16*A2**(-3)*A3**2*BX**2*
• E33-1/8*A2**(-3)*A3**2*BX*BY*E13+I/16*A2**(-3)*A3**2
• *BY**2*E11-1/16'E13

Al'_S69=H5*TH*ANS70
ANS82=-3/16*A2**(-2)*A3*BY*CY*E11+1/16*A2**(-3)*A3**2
• *AX**2*E33-1/8*A2**(-3)*A3**2*AX*AY*E 13+1/8"A2"*(-3)
• *A3**2*AX*BX*E33+ 1/16*A2**(-3)*A3**2*AY**2*E 11-1/4"
• A2**(-3)*A3**2*AY*BX*E13+ 1/8*A2**(-3)*A3**2*AY*BY*
• E1l+l/16*A2**(-3)*A3**2*BX**2*E,33-1/8*A2**(-3)*A3**2
• *BX*BY*E13+I/16*A2**(-3)*A3**2*BY**2*E11+1/16"E13

AI'_S83=TH*ANS84
ske(1,1)=ANSI+ANS 15+ANS29+ANS49+ANS69+ANS76+ANS83

return
end

4.8 Significance and conclusion

Some conclusions are drawn and the significance of automatic problem formulation is

discussed as follows •

1. Improving on-line efficiency --- the closed-form solution of the local stiffness matrix

allows us to get a numerical value by simply substituting the global nodal coordinates

into a FORTRAN-code subroutine. This procedure is done in just one step. Of course,

this is faster than the Gauss quadrature rule which usually needs more than one

integration point to get a reasonable solution 4 . The symbolic template in the nonlinear

numerical analysis also plays the same role. In the case of a large number of elements (or

large dimension size in matrix), the significance in improving on-line efficiency will be

greater•

2. Increasing the accuracy of solution --- the closed-form solution is an exact solution.

There is no integration error introduced into the evaluation of the stiffness matrix. The

4 Reduce integration is an exception and sometimes results in Hourglass drawback. This
special case is ruled out here.
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accuracy of the Fourier series approximation can be increased as high as the user

requires. Therefore, the results from using symbolic and algebraic manipulation will be

more precise than those of pure numerical analysis.

3. Free from hand-calculation and typing error --- As the results in the tensor formulation,

derivation of equations of motion and stiffness matrix constructions show, the algebraic

expressions are too lengthy to be formulated by hand. Even supposing that they could be

done by hand, it would be so tedious that nobody could guarantee that no mistakes

would be made when trying to key them into the computer. With the use of symbolic

and algebraic manipulation, both difficulties are completely solved. As long as the user

inputs the correct commands, there will not be any question about the correctness of the

results.

4. Simplifying FORTRAN programming --- the numerical values of the local stiffness

matrix can be obtained by simply using the _CALL" command once. This isn't true

when Gauss quadrature integration is employed in the finite element method to evaluate

integration. It is necessary to have a "DO" loop, "CALL _ command and multiplications

of various weight coefficients for different integration points. These will complicate the

program and therefore will produce more error sources.

5. Further analysis of symbolic results becomes available --- Sometimes the pre-analysis of

the expressions produced from symbolic and algebraic manipulation will lead to a

dramatic improvement in the incoming numerical analysis. The closed form solution

makes this analysis feasible. For example, suppose that the diagonal terms of global

stiffness matrix need to be more dominant to improve the ill-condition, this can be

achieved by appropriately relocating nodes so that the off-diagonal terms of local

stiffness matrix will be smaller or even vanished. This is the unique advantage that the

numerical method does not possess.
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CHAPTER V

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO

MATERIALLY NONLINEAR PROBLEM --- RIGID-PLASTIC RING

COMPRESSION

A

5.1 Introduction

The application of the finite element method to the rigid plastic problem was originally

devised by Lee and Kobayashi ([1], [2]), and became popular in the last decade. This method

allowed the deformation behavior of metal to be revealed on the computer screen stage by stage

during the process of metal forming. As a consequence, the design techniques of die, and the

manufacturing process were improved. This contribution to the industrial manufacturing field

is recognized to be very significant.

Starting from the principle of virtual work and associating with the normality condition

of plasticity, the theoretical analysis of this method leads to an inequality objective function

with an equality constraint. This equality constrained problem is then changed into an

unconstrained problem by introducing Lagrange multipliers. As the stationary requirement is

reached, the total unconstrained problem can be solved incrementally by the finite element

method and the upper bound solution will satisfy the equilibrium equations, constitutive

equations, compatibility equations, incompressibility constraint, and boundary conditions.

Despite the success of the finite element application to the problem, the formulation of it

is very tedious. Especially when the friction boundary condition is considered, the performance

of integration along the interface surface and the evaluation of the first and second derivatives

with respect to velocity fields is always difficult to obtain by hand. Therefore, unlike the

traditional hand derivation, this chapter will utilize the symbolic and algebraic manipulator

REDUCE to do the job of formulation. The quantities involved in the formulae then can be

made into subroutines symbolically at the the element level to facilitate the global assemblage.

As a result, otherwise intractable tasks become possible and free of errors.
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5.2 Preliminary formulation

Consider a body of volume V with the essential boundary condition, velocity /7,

prescribed on surface S u and two separated natural boundary conditions, traction F and

frictional stress .f', prescribed on S F and Sc, respectively [Figure 5.1]. The actual stress and

velocity fields will satisfy the following relationships :

1. Equilibrium conditions"

crj,j ,, 0 (neglecting body force ) (5.1)

s (_
sF(F)

V

S

Figure 5.1: Configuration of domain and boundary conditions

Where

2. Compatibility and incompressibility conditions:

i j - _(u, .i + uj., ) (5.2)

e,, .- 0 (5.3)

3. Stress-strain rate relationship

(]1 "t

• 'J • deviatoric stress.

• '_ and E • effective stress and strain-rate, respectively.

4. Boundary conditions :
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cr o n, .. F 1 on S r (5.5)

u, - U on S, (5.6)

o jn, =fj (frr) on Sc (5.7)

Where the relative velocity between die and deforming body is defined as follows •

fr =_ _u..a _. Vrt~

The t- here is the unit base vector along die and working piece interface.

With an admissible velocity field u_', the virtual work principle gives

(5.8)

cr,ji,aV = F. _'dS + f-. (fr; + J)dS + (_r n,)U dS (5.9)
¥ e M

The frictional stress f" is defined as follows and is plotted in Figure 5.2.

f (V)
r

-mg

mg

"- V
r

Figure 5.2 • Plot of frictional stress vs. relative velocity

Wr

f0z, - -,,, • g,

where the friction factor m is in the range of 0 < m < 1 and g is the yield shear stress. By

considering the normality condition of yield surface

(cr j - o j)i_j :- 0 (5.1 I)
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and inequality equationS

The equation (5.9) becomes

=-0
(5.12)

(5.13)

All conditions will be met when the left hand side of equation (5.13) reaches the

minimum values with respect to U_" and satisfies the incompressibility condition of equation

(5.3). Since there is no ambiguity in omitting the asterisk, for the sake of simplicity the

admissible field _'° will be denoted as u for the following discussions without any special

note. By introducing the Lagrange multiplier !, the equality constraint equation can be included

into the objective function. The stationary value problem for finite element formulation is
therefore

-_---_[ agdV - g. ¢dS _ f (9' ). 9, dS + Xi, dV] 0 (5.14)
¥ r: •

where gt represents the functional inside the square _{]_:ket. Since the frictional stress is not

differentiable at the point I7 r , 0 [see Figure 5.2], _ does not exist and the convergent

solution will not be available for equation (5.14). In order to overcome this numerical

difficulty, the frictional stress is approximated in terms of arctangent function [see Figure 5.3]

r(i7,.) = - m • g • [( 2---)inn -,(a._)]f-' (5.J5)

where the arbitrary constant a is several orders less than the die velocity. Its function is to

exaggerate the argument of arctangent to reduce the error between equation (5.15) and equation

(5.10). The equation (5.15) is absorbed into functional by the following inequality6

5 See appendix A for proof.

6 See appendix B for proof.

96



!

-100. -EO.

-0.5

--1.

-1.5

-I

-Tan (x)

!

50.

X

!

100.

Figure 5.3 • Arctangent approximation of frictional stress

The final form of equation (5.13) is

velocity
specified

*:*0

Figure 5.4" Physical configuration for nng compression problem

11,0

(5.16)

(5.17)
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5.3 Matrix method for the ring compression problem

If a specific problem of ring compression is considered [see Figure 5.4], the surface

traction is due to friction force only. Therefore the term for SF integration in equation (5.17)

can be dropped. By the substitution of the following equations to equation (5.17),

firtE' 0 m

,J_c',3 "£ £ I,t

- B * U (5.18)

(5.19)

the stationary requirement of the functional results in the following nonlinear equation.

( )K *_'dV + U r *K *U *-_dV +Z*Q

together with an incompressibility constraint equation

where

• K -B r

° O -fB r

*D *B

• C dV

° C" proper matrix such that

• D" flow matrix.

U r *Q -0

implies the C r d incompressibility condition.

•U: vector of velocity. It is represented as u" previously.

The derivative part in the second term of equation (5.20) is equal to

(5.20)

(5.21)
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a(_-) 1 ao _ at Y at
3U " "=--- = -'-2 OU (5.22)e 3U _ 3U e

The first term of (5.22) is dropped for simplicity due to the assumption that _ is constant for

the infinitesimal strain change [see References 2]. Physically, _3 is the current yield strength
(denoted as Y) of the material.

AU
The equations (5.20) and (5.21) are then perturbed by introducing a small velocity

into the velocity vector. This gives the following equations '

[ 2_a + .b._O_(____)au ] • K • (U + AU )dr + X • Q

• K ,(U + AU)[ ( )+ ('-_-)AUIdV
3U e

" - [TO-- + au] (5.23)

and

where

(U +AU) r ,Q =0 (5.24)

- - (foo"J,e dVr)dS

is contributed by the friction traction. After neglecting the second and higher order terms, the

equations (5.23) and (5.24) can be combined into the following forms •

r + OU 2 =- Qr U f
9*9 9* 1 9* I 9* I

(5.25)

where

Ps.s=2_ {1K +[M -(1)ZN]}

Hs. s =' "_'-K *U - "-_-E
g

(5.26)

(5.27)
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2 4 .2 .2 .2 3 .2E" - _" E, + e_ + ee - E',d, - E'_c"8 - d, do + _y,, (5.28)

Es.l " Br * A (5.29)

fvn TQs.l = C dV (5.30)

[2d, -d -do}

. rag 1 =j2 , - dr

A *.l ""_'c" 4., " "¢_'!2d0 -.fg,,3e,. d_

(5.31)

Ks. s - B r * D • B (5.32)

Ms. 8-( ) [-_--E -K *UIE r (5.33)

I T

_. - "_C c" (5.34)

Ns. s E • U r- * K (5.35)

k -U r *K *U

floo "lm (_) - (a .---7_)dV, ldS_=- r[.is *g , 2 tan i V,

(5.36)

(5.37)

m, a g are constants for a specific material.

5.4 Finite element analysis

The domain discretization for ring cross section is shown in Figure 5.5. The actual

domain used by finite element analysis is only the upper half of that given in Figure 5.5 due to

the symmetric geometry.

The finite element model contains 96 four-node quadrilateral elements with 117 nodes

in total. For an isoparametric element, the shape functions are

4_-(1 - s)(1 - t ) qz 1ql" , - (l+s)(l- t)

q3- 14-'(l+s)(l+t) , q4-1(l-s)(l+t)

and
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4. 4

u (s ,t ) - q, ,
i -I z -I

4 4

• r+ , z(s,t) = Eq , *zr(s,t )- .q,
-1 t -I

Where

• s, t are natural coordinates.

• r, z are physical coordinates.

• u, v are the velocity components in the r, z direction, respectively.

The subscripts in r, z, u, v represent the nodal indices.

The strain rate in axisymmetric case can be expressed in a matrix form as follows :

' I

0. O I.tl 3.0

I

4.0

Figure 5.5" Discretization of ring cross section. Due to the symmetry
of geometry, only the upper half of this cross section is
used for finite element analysis.
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Where

o_ 0

i t _
II

d- de &
0

vU)-B *U (5.38)

n mt

Ii °

0 0

0 0

1 1

u T -{u, ., u, u. u_ u, u. u,}

Iilifo 10 ql 0 qa 0 q_ 0 q4 0

ql 0 qa 0 q3 0 q4 ÷

-!

_ -% o o
Os c_s

5? "gr o o

0 0 dr &
77" 77"

0 0 _ &

(5.39)

qt., 0 q:., 0 qs., 0 q4., 0 ]

1.t 0 q:_ 0 qs, 0 q4, 0 I
qt., 0 q2., 0 qs., 0 q,.,
ql, 0 q 2, 0 q3_ 0 q 4t j

(5.40)

The Jacobian is"

J /

(5.41)

The flow matrix is ;

"2

0
D-

O

0

C r - (1

0 0 O"

2
_- 0 0

2
0 _- 0

1
0 0 T

l 1 0

(5.42)

(5.43)
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Sincebilinearvelocity distributionsareassumedfor four-nodequadrilateralelement,
therelativevelocitiesalongtheinterfaceareinterpolatedasfollows:

r - r z r I - •

V, _. _ul + r_- rzU2 (5.44)

If die velocity is specified as uJdl= 1, then the frictional stress will be

if" = - {m *g • (_,-)tan-_(-_-_'-)}_ (5.45)

and

,Vrm * g *(_)tan- (--.ff-)dVr]dS (5.46)

5.5 Application of symbolic manipulation

The difficulty of formulating the equations shown in the last paragraph can be eased by

the employment of symbolic and algebraic manipulation. Based on equation (5.25), the original

goal is to make a template form in element level for global assemblage. However, due to the

limitation of memory capacity in hardware systems, the goal is modified to make a template

form for individual entries of equation (5.25) only. There are three kinds of forms produced by

REDUCE :

. Integrable form --- This is the form which results from the fact that integration can be

performed analytically by REDUCE. The evaluation of equations (5.30) and (5.37)

belongs to this class. There are no natural coordinates in the resultant expressions.

, Non-integrable form --- The equations (5.26), (5.27) and (5.33), for example, are not

integrable due to the existence of _', its square and even cubic in the denominator of the

integrands. Moreover, since the resultant expression of _" occupies more than sixteen

pages, the complete integrands of equations (5.26) and (5.27) are not available.

Therefore, the individual form for quantities, such as K, M, N, k and E, are obtained

symbolically, and the summation as well as their integration are carried out numerically

, Miscellaneous forms --- Other equations which have nothing to do with integration, such

as (5.28), (5.29), (5.31), (5.32), (5.35) and (5.36), are obtained symbolically by matrix

operations.
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a4_

The evaluation of _ in equation (5.25) requires a number of delicate pre-treatments. It

is necessary to discuss this subject independently here so that the fundamental nature of

symbolic and algebraic manipulation will be revealed. Intuitively, there are three steps to

evaluate _ They are •

1. Evaluation of the integral with respect to relative velocity Vr in (5.37).

2. Evaluation of the integral with respect to interface domain S in (5.37).

3. The results then are differentiated with respect to velocity fields.

Theoretically, there is nothing wrong with the methodology given above. In fact,

REDUCE can only do the first evaluation. The other two are not feasible. Therefore, some pre-
a,a

treatments are necessary to make REDUCE work to evaluate the 70". This will force us to

deviate from the formal methodology given above as follows.

- -_(_)dV, ]dS- m *g * v

- - m * g * (T) tan - (-a-)dV, 1"£7dS

2)fs . v, ,v,- - m * g * ('r [ tan -'(.a-)-_"-]dS
Ie

(5.47)

The term 7"0" can be evaluated from equation (5.44). Equation (5.47) becomes

2 /*2s t. r,tana+ , (+)Jo J,, ,+, r-,, ,,^-- - - (-a-)_rarauOu_ -m g *
t

-4.m ,_ 'fr 2[r2 I v= ;7"_ tan- (+) - r rz tan -t(v) ]dr
I

(5.48)

Rewrite equation (5.44) into

UI--I¢ |

V, - ,_--:_hr +
r I_ l--_" |t¢ I

fl--ti
- Yr + Z (5.49)

and substitute it in equation (5.48).

0_ -+._.s /"'[r 2 t _ -i r
- ,'-_ j, tart- (x-r + z) _ • rzta n (rr + Z)]dr (5.50)

Since REDUCE is still unable to handle equation (5.50), further treatments are required. Let
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Y Z F I

W -Tr +7--Yr +Z (5.51)

then

dr - dWr' (5.52)

and equation (5.50) becomes

2

09 -4. f_'[_ _ -z,
1 Y' Y'

r2 tan-l W ]dW (5.53)

Note that the upper and lower limits of integration are changed. Starting from this

point, REDUCE can proceed by itself. The tasks it performs in this specific problem include

the integration and back substitution of the variables. The other quantity, such as _ etc., can

be calculated in the similar manner. The second derivatives are simply computed by

differentiation of the results of the first derivatives. The REDUCE program and a part of

fortran solution are presented as follows.

.........................................................................

%REDUCE program to calculate friction part and its denvatives
.........................................................................

OFF EXP;

A 1:=INT(ATAN(W)*(W-ZP)**2/YP-ATAN(W)*(W-ZP)* R2,W)*4*TM*TK/((R1-
R2)*YP**2);
A2:=INT(ATAN(W)* R 1* (W-ZP)-ATA N(W)*(W-ZP)* *2/Y P,W)*4*TM*TK/((R1 -
R2)*YP**2);
LET YP=(U 1-U2)/(A*(R 1-R2)),ZP=-(R I*U2-R2*U 1)/(A*(R l-R2));
LET LOG((A**2+U2**2)/A**2)-LOG((A** 2+U 1"'2)/A*'2)
=LOG((A**2+U2**2)/(A**2+U 1"'2));
OFF EXP;
ON FORT;
OFF ECHO;
CARDNO!*:=10;
OUT "look.ftn";
WRITE
" SUBROUTINE FRIC(U1,U2,A,TK,TM,R1,R2,B 1,B2,B 11,B 12,B22)";
WRITE" IMPLICIT REAL*8(A-H,O-Z)";

B 1:=SUB (W=U2/A ,A 1)-SUB(W=U 1/A ,A 1);
B2:=SUB(W=U2/A,A2)-SUB(W=U 1/A,A2);
B 11: =DF(B 1,U 1);
B22: =DF(B2,U2);
B 12:=DF(B 1,U2);
WRITE" RETURN";
WRITE" END";
OFF FORT;
SHUT "look.ftn";
BYE;
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C Thefortransubroutinemade by REDUCE for frictional part.

SUBROUTINE FRIC(U I,U2,A,TK,TM,R 1,R2,B 1,B2,B 11,B 12,B22)
IMPLICIT REAL*8(A-H,O-Z)
ANS4=LOG((A**2÷U2**2)/(A**2+U I**2))*A**3*R2**2.3.*LOG

• ((A**2+U2**2)/(A**2+UI**2))*A*RI**2*U2**2+3.*LOG((A
• **2+U2**2)/(A**2+U I**2))*A*R I*R2*U I*U2+3.*LOG((A**2+
• U2**2)/(A*z2+UI**2))*A*RI*R2*U2**2.3.*LOG((A**2+U2**
, 2)/(A**2+U l**2))*A*R2**2*U 1' U2+A*RI**2*U l**2-6.*A*R1
• **2*U I*U2+5.*A*R!**2*U2**2+A*R I*R2*U I**2+6.*A*RI*R2*
• U I*U2-7.*A*R l*R2*U2**2-2.*A*R2**2*U I**2+2.*A*R2**2*
, U2"'2

ANS3=-6.*ATAN(U2/A)*A**2*R 1"2'U2+3. *ATAN(U2/A)*A**2*
R I * R2* U I+9.* AT AN(U2/ A )* A **2*R I *R2*U2.3,* A T AN(U2/A )* A
**2*R2**2*U 1-3.*ATAN(U2/A)*A**2*R2**2* U2+2.*ATAN(U2/
A )*R I **2*U2**3-3.* A TAN(U2/A )SRI *R2*U I *U2**2-A T AN(U2/
A)*RI*R2*U2**3+3.*ATAN(U2/A)*R2**2*U I*U2**2-ATAN(U2/
A)*R2**2*U2**3+LOG((A**2+U2**2)/(A**2+U 1"'2))*A*'3'
R I**2-2.*LOG((A**2+U2**2)/(A**2+U l**2))*A**3*RI*R2+
ANS4

ANS2=6.* ATAN(U1/A)* A **2*RI **2*U2.3.* ATAN(U1/A)* A **2*
R I * R2*U1-9.* A T AN(U1/A )* A **2*RI *R2* U2+3,* A TAN(U1/A )* A
**2*R2**2*U I+3.*ATAN(U 1/A)*A**2*R2**2*U2-2.*ATAN(U1/
A )*RI **2*U I **3+6.W ATAN(U1/A )iRI **2*U I *t2*U2-6.* A TAN(
U 1/A)*RI**2*UI*U2**2+ATAN(U 1/A)*R I*R2*UI**3-3.*ATAN(
U 1/A)*R l'R2* U I**2*U2+6.*ATAN(U 1/A)*RI*R2*UI*U2**2+
A T AN(U I/A )*R2**2*U I**3-3.* A T AN(U1/A )*R2**2*U I **2*U2+
ANS3

A NS 1=2.* A NS2*TK*T M

13I=ANS 1/(3.*(U I-U2)*'3)

ANS I=2.*ANS2*TKiTM

B 12=A NS 1/(U 1-U2)* *4
RETURN
END
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5.6 Numerical evaluation and result treatment

The numerical scheme employed is the Newton-Raphson iteration with a displacement

increment of 0.01 in each stage. The initial guesses are slightly modified from the solution of

the elastic ring compression problem. Since the existence of zero velocities in r-direction at

interface nodes will overflow the subroutine FRIC, the problem is modified by assigning a

different small number to the r-component of every relevant node. The question that arises is

how small they should be. According to the experiments, only the numbers which are smaller

than 10 "12 will achieve convergence with this scheme. The convergence criterion used here is

-ll[I-: 0.00005.

The boundary conditions are specified at two parts of the boundary •

1. Symmetric boundary condition --- The velocities in z direction [see Figure 5.5] are

specified to be zeros along the z--O boundary.

2. Die velocity boundary condition --- The velocities at the interface surface between the die

and the working piece are specified as unit per second in the negative z direction.

Numerical integration of non-integrable terms is performed by the 4-point Guass

quadrature rule. The assembly of a global matrix is also done numerically. The equation solver

is the Gauss elimination method, from the IMSL subroutine library.

The deformed configurations for friction factor for m=0.5 and m=0.0 are shown in

Figures 5.6 and 5.7, respectively. As the figures show, the deformed shapes are completely

different for low and high frictional factors. The velocity distributions in the deformed states

are also plotted in Figures 5.8 and 5.9, respectively. The neutral lines in both cases are visible

from pictures. Figures 5. 10 and 5.11 also show the effective stress 7 distributions for two

cases. As the shapes of elements are distorted, the error increases and the convergence of the

scheme becomes harder. In order to continue the execution, the technique of adaptive mesh

needs to be introduced.

7 The effective stress is defined as
I

- (r, cr_ - o_cr_ + 3_ + 3z_z + 3rx2_) 2
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CHAPTER VI

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO THE

PLATE PROBLEM

6.1 Introduction

Although many shell theories exist in literature, there are only two distinct concepts

from which these theories are derived. One takes the three-dimensional body as a starting point

and tries by various means to reduce the problem to the form that can be expressed in a two-

dimensional manifold. This class of theories are called derived theories. The works by W. T.

Koiter, and E. Reissner are in this class. The theory adopted by this study belongs to this

class. The other class of theories consider a shell as a bounded region of some deformable two-

dimensional manifold, and are supplemented by one or more fields of vectors over this

manifold. This class of theories are called direct theories. A. E. Green, P. M. Naghdi, and W.

L. Wainwright worked on this class of shell theories. Since the real shell is a three-dimensional

body, the direct approach has to rely upon some a priori statements.

Despite a large amount of publications using the finite element method to solve plate

and shell problems, none deals with the problems by employing the tool of symbolic and

algebraic manipulation. This is not only due to the late availability of software, but also due to

the capacity limitations existing in the symbolic and algebraic software 8 . This chapter outlines

the simple and universal methodology to solve the plate and shell problems, then presents

examples which apply symbolic and algebraic manipulation to them, and finally switches to a

numerical method at the point where the symbolic manipulation is stuck by its limitations. As a

consequence of this work, the analytic study of plate and shell problems by computer are
pushed a step further.

8 See next chapter for a detail discussion on the capacity limitation of symbolic and
algebraic manipulation.
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6.2

WheFe

Preliminary formulation

Stating from the equations of equilibrium in three-dimensional state,

D GV(u=,z)+p'(ua,z),O
1 (6.])

•Dj" operator of covariant derivative in 3-D space.

• oiJ: 3-D state of stress ( i,j=l, 2, 3).

•pi. external volume force.

• u a" Gaussian coordinates of surface ( a=l, 2).

• z" normal coordinate of surface.

and applying the following Kirchhoff-Love hypothesis to virtual displacements

6va(u_',z ) - (a_ - zd_) • (6v, - z6q,) (6.2)

_3(ua, z ) = 6w (6.3)

where

Y

• aa " component of mixed metric tensor.

° da " component of mixed curvature tensor.

Here the rotation &/r is defined as

6q,, - de/iv # + (Sw.,, (6.4)

Then, following the lengthy derivations by F. I. Niordson in his Shell Theory [1], the principle
of virtual work gives

ffot_v_ ,Se_ +M '_,sK. jaa

- ffo[F°_vo +p_w IdA + _¢ [T"6vo + M_'&a + Q6w lds (6.5)

Where
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• N ctl3" effective membrane stress tensor.

• M ctl_ • effective moment tensor.

• dF_,o.[3: virtual strain tensor.

• dKctl3 : virtual bending tensor.

• F °t, p : effective load components in surface and normal directions, respectively.

• Tct : membrane force vector acting on the boundary.

• M °t : moment vector acting on the boundary.

• Q : supplemented shear force on the boundary.

• dva, dw : virtual displacements in plane and transverse directions, respectively.

• dret=_ctl]dql3

• ec_13: alternate tensor.

Mathematically, the strain tensor Ect[3 and bending tensor Kct[5 are defined as

1 ,,

E¢ -_ 2(a_ - a_ )

K =d" -d

(6.6)

(6.7)

where the superscript asterisks indicate the deformed state and can be derived as follows •

a _ a e +Po_ +Pt_ +Pr,,Pt3y + q"qtJ (6.8)
1

Y

d_ - (_)'[(l+p_ + P /a)(do_ + Dtjq,, + dcp_)

-(qP + eme r_
qy p_ )(D ¢ p_ - d opq_,)] (6.9)

The generalized two-dimensional displacement gradient p and its determinant in

equation (6.9) are expressed as •

(6.10)

(6.11)
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After linearization, the strain and bendingtensorscan be expressedin terms of
displacementsasfollows •

E# =,_(Dav # + D#v,_) - d_w (6.12)

K ,_DaD#w +d_Dav r +darDavr +vrD d_ -d r# #rdaw (6.13)

be •

Considering the isotropic thin elastic shell for simplicity. The constitutive equations will

N "¢ Eh I -" __'77r[( v )E "# + va _ E_ ]

M "# Eh r'l -- r
= j_"_"_bt( v )K '_ + va_ Kr ]

(6. 14)

(6.15)

The substitution of the last four equations into equation (6.5) will result in the weak

form which is expressed in terms of displacement vectors. Before applying the finite element

method to solve equation (6.5), a universal methodology is outlined in the next paragraph.

6.3 Methodology for solving shell problem by FEM

After the preparations of mathematical formulation, it is necessary to discretize equation

(6.5) to solve shell problems by FEM. However, as equations (6.12) to (6. 15) show, the

calculations of constitutive equations and strain-displacement relations involve the evaluations

of metric, curvature tensors, and covariant derivatives. Moreover, in general, the calculations

of covariant derivatives require the computations of Christoffel symbols. If a given geometric

domain is complex, these calculations will be tedious. With the help of symbolic and algebraic

manipulation, these tough tasks can be performed by simply giving the parametric equations of

the surface. Here the outline of methodology to solve shell problems is presented as follows :

1 Finding the parametric equations of the middle surface for a given shell.

2 Calculating the Christoffel symbols, the metric and curvature tensors based on the

parametric equations. If the parametric equations are chosen correctly, the resulting

metric and curvature tensor should obey the integrability condition. In other words, they

should not violate the Coddazzi-Mainardi equations, Gaussian equations and the regular
condition.

3. Substituting the metric, curvature tensors, and Christoffel symbols into constitutive

equations and strain-displacement equations.
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4 Discretizing the variational form of equation (6.5) and solving it by finite element
method.

The above methodology is universal for any shell problems. Different shell geometries

can be solved in the same way by simply feeding appropriate parametric equations into the

symbolic and algebraic manipulator REDUCE. Based on this methodology, an example of

plate problem is shown in the following paragraph.

6.4 Symbolic and algebraic manipulation application to plate problems

6.4.1 Methodology

1 Three parametric equations are chosen as follows"

fl=ul, f2=u2 ' f3=constant

2 Calculate surface metric, curvature tensors, and Christoffei symbols symbolically. These

calculations are based on their fundamental definitions, given by:

• metric tensor"

I

a _ -- f'+,f,o (6.16)

• curvature tensor •

i !

d_ - X f.,_ (6.17)

where f.'l , f,+z and X '/are surface Gaussian and normal coordinates. They are shown in

Figure 5.2 pictorially, and X/ is defined by •

I

X + -re fJfk
•- a ,jk_,l_,2 (6.18)

• The 2nd kind of Christoffel symbols is defined as:

} I _ Oatj p Oarp 8aa .a_[fly,p].Ta [a-_ + ,,fl Y a,' a, r] (6.19)

The REDUCE program for calculating equations (6.16), (6.17), (6.18) and (6.19) is

presented as follows. The results follow the program.
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O_OZZZ_Z_Z_ZZZZZZZZZZ_ZZZZZZZZZZZZZ_ZZZZZZZZZZZZZmZZZSS_S_8

% REDUCE PROGRAM FOR CALCULATING METRIC, CURVATURE
% TENSORS & CHRISTOFFEL SYMBOLS
_OZZZZZZZZZZZZ_ZZ_ZZZZ_ZZZZ_ZZZ_ZZ_Z_ZZZZZZ_ZZ_ZZZZ_ZZZZZ

C_ ............................................................

%INPUTTING THE PARAMETRIC EQUATIONS
O'_ ............................................................

MATRIX A(2,2),CA(2,2),F(2,3),D(2,2);

ARRAY X(3),C 1(2,2,2),C2(2,2,2),N(3),E(3,3,3),U(2);
U(1):=S;
U(2):=P;

OFF PERIOD;
X(1):=U(1);
X(2):=U(2);
X(3):=CONSTANT;
FOR I:=1:2 DO FOR J:=l:3 DO

F(I ,J): =DF(X(J),U(I));

FOR ALL T1 LET COS(T1)**2+SIN(T1)**2= 1;

%CALCULATING COVARIANT METRIC TENSOR
...............................................................

FOR M:=l:2 DO FOR N:=l:2 DO

A(M,N):=FOR I:=1:3 SUM DF(X(1),U(M))*DF(X(I),U(N));
A:=A;

DETA:=DET(A);

%CALCULATING CONTRAVARIANT METRIC TENSOR
{_qD .......................................................................

FOR L:=l:2 DO FOR M:=I:2 DO

IF L=I AND M=I THEN CA(L,M):=A(2,2)/DETA
ELSE IF L NEQ M THEN CA(L,M):=-A(M,L)/DETA
ELSE CA(L,M):=A( 1, I)/DETA;

O'_ ......................... 7 ..................................................

%CALCULATING THE 1ST & 2ND CHRISTOFFEL SYMBOL

WRITE "THE 2ND CHRISTOFFEL SYMBOL';
FOR L:=l:2 DO FOR M:=l:2 DO FOR N:=I:2 DO

C 1(L,M,N):=(I/2)*(DF(A(L,N),U(M))+DF(A(M,N),U(L))
-DF(A(L,M),U(N)));

FOR I_.:=1:2 DO FOR M:=l:2 DO FOR N:=l:2 DO

<<C2(L,M,N):=FOR I:=1:2 SUM CA(L,I)*CI(M,N,I);
WRITE "C2(",L,",',M,",",N,") =',C2(L,M,N)>>;

%CALCULATING ALTERNATING TENSOR E(I,.I,K)

FOR I:=1:3 DO FOR .I:=1:3 DO FOR K:=l:3 DO

<<IF (I=.1 OR .1=K OR I=K) THEN F_.,(I,.1,K):=O

ELSE IF (I=1 AND J=2 AND K=3) OR (I=2 AND .J=3 AND K=I) OR
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(I=3 AND J=l AND K=2)THEN E(I,J,K):=I
ELSE E(I,J,K):=-1;WRITE E(I,J,K)>>;

O_ ...............................................

%CALCUI_.ATING NORMAL VECTOR
...............................................

FOR I:=1:3 DO

N(I):=(FOR J:=l:3 SUM FOR K:=l:3 SUM

E(I,J,K)*F( 1,J)* F(2,K))/SQRT(DETA);

7o ....................................................

%CALCULATING CURVATURE TENSOR
_'_ ....................................................

FOR J:=l:2 DO FOR K:=l:2 DO

D(J,K):=FOR I:=1:3 SUM N(I)*DF(F(J,I),U(K));
FOR ALL T1 CLEAR COS(T 1)**2+SIN(T I)*'2;
FOR ALL T1 LET COS(T 1)*'2- I=-SIN(T1)**2;

%OUTPUTTI NG RESULTS
_7_ .................................

OFF PERI OD;

OFF ECHO;
OUT "SURFACE";
WRITE " ........................................................ ".

THE COMPONENTS OF METRIC TENSOR ""WRITE"
WRITE "
A:=A;
WRITE "
WRITE "
WRITE "

D:=D;
WRITE "
WRITE "
WRITE "

THE COMPONENTS OF CURVATURE TENSOR";

THE CHRISTOFFEL SYMBOLS";
......................................... ".

FOR I:=1:2 DO FOR J:=l:2 DO FOR K:=I:2 DO

WRITE "CHRIS(" ,I,"," ,J," ," ,K,")=" ,C2(I ,J,K);
SHUT "SURFACE";
BYE;

The outputs of REDUCE are presented as follows •
.......................................................

THE COMPONENTS OF METRIC TENSOR
.......................................................

A(1,1) := 1
A(1,2) := 0
A(2,1) := 0
A(2,2) := 1
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D(1,2) := 0
D(2,1) := 0
D(2,2) := 0

THE CHRISTOFFEL SYMBOLS
................... .. ................ .__.

CHRIS(I, 1,1)-0
CHRIS( 1,1,2)-0
CHRIS( 1,2, I)=0
CHRIS( 1,2,2)=0
CHRIS(2,1,1)-0
CHRI S(2,1,2)-0
CHRIS(2,2,1)=0
CHRIS(2,2,2)=0

As the output from REDUCE shows, all of the Christoffel symbols vanish in the plate

case, According to the above solutions, the metric and curvature tensors in matrix form
are

[aqo ] = (10 _, [dqs ]." (0 0_ (6.20)

3. After substituting the calculated metric and curvature tensors, the constitutive equations
are as follows

• For membrane"

I!t f:1 0
12 Eh

"77 1-v
22 0

,'lf "l0/E2_/

• For bending •

io 0], f" lXl-,,"---'-_ 1 - V

/M_! o lie_

The relationships between linearized strain-displacement and

are from equations (6.12) and (6.13) •

I

E ,,_ - "_(D ,,v p + D _v a ) 1- _vp.,, + v,,p)

K ¢ - D,,D c w . w.a _

(6.21)

(6.22)

bending curvature tensors

(6.23)

(6.24)
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where the disappearance of Christoffel symbols in this case eliminates the distinction

between covariant differentiation and ordinary partial differentiation. In addition, the

unity of the metric tensors remove the distinction between contravariant and covariant
tensors.

4. Finite element method starts (see the following paragraph).

6.4.2 Finite element discretization

The element chosen for this topic is the combination of the constant strain triangle

(CST) element with the Cheung, King, Zienkiewicz (CKZ) triangle element. The

considerations of selecting this element will be discussed later. The shape functions for this
element are

Lot _ _

2 1 2 1

N,, = 2A[cr(_a_t _ + 7_,_2_3) - ca(_,._r + 7_,_2_3)]

2 1 2 1

Nay = 2A[b a (_a_r + 7_,_2_:3) - br(_,,_ o + 5"_,_2_,)]

(6.25)

Where (ct,13,¥) is the permutation of (1,2,3) and no summation convention is applied in

equation (6.25). The constants bi, ci, and A are defined as follows •

Y l-Y3 v -y 2= _ b ._. Y J-Yl

b, 2a , z 2---_, b 3 =

X 3-X 2 Xl-X 3 X2-x I

Cl _ 2A , C2 =" 2A ' C3 == 2A

2A -- x2y 3 - x3Y 2 + x3y I _xjy 3 + x,y z - Xzy I

(6.26)

Then the deflections u, v, w in local coordinates x, y, z direction can be interpolated by

3

u = Xu L
t -I

3

v =_v L
I-I

o_ I
w =waN _ +-.7. N _ + .2..l_Nay

(6.27)

The substitution of equations (6.21) to (6.27) into (6.5) gives the discretization form

fL [B: OtBl+ B_D 2B2]dA "d = f fD rr dA + fs r ds + f M r ds (6.28)
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Where

l--vDI = F2"

0

D 2 " 12(_-__l

(6.29)

(6.30)

2_ 0

_--- 0
'g2

Ii R b 2 b 3 0 0 0 1 a
Bz" , c2 c3 bl b2 b3 _ 0

0 a ,
0 0 c, c 2 c 3

0 --_
a_ 2

0

oooo oooo oooo1LI 0 0 0 0 L2 0 0 0 0 L3 0 0

2_ 0

a

o

JiltB2 I c2 c3 bl b2 b3 _ 0 bl b2 b3

0 _ C 2 C 30 0 c I c: c3 _

o _ t_,J

M -[M' M2][_b '| c2bz C3]b, _, 1_'

(6.31)

(6.32)

(6.33)
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0 N 1 N,_ Nly 0 0 N 2 Nzx N2y 0

V 1 W t W 1.x W 1,y 1l 2 V 2 W W W
2 2,x 2 .y 1"13

m

N3 N3x N3y ]

3 W3 W3, x W3,y ]

(6.34)

(6.35)

(6.36)

t 0 0 0 0 L_ 0 0 0 0 Ls 0 0 0 0 l

L t 0 0 0 0 L 2 0 0 0 0 L 3 0 0 0

0 N, Nix Nly 0 0 N 2 N2, N_ 0 0 N 3 N3x N3y

(6.37)

6.4.3 Numerical results and post-process

Three boundary conditions are applied to the test problem. They are •

1. In-plane uniaxial tension [see Figure 6.1] --- In this case, only the membrane component

contribute to the stiffness matrix. The consistent load vector is due to the boundary

traction S only. The REDUCE programs to the stiffness and the consistent load vector

are presented as follows. In addition, the stress distribution can also be calculated
symbolically.

_---10cm

FEM domain

v

v

v

Figure 6.1: Plate with hole under uniform uniaxiai tension load
100 N/cm**2
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%***********************************************************
%Symbolicalprogramfor makingstiffnessmatrixfor platetensionproblem

matrix bc(3,6),In(6,15),d(3,3),b(3,15),s(15,15);
arrayn(3);
n(1):=s1;n(2):=s2;n(3):=s3;
In(1,1):=I ;ln(2,6):=1;In(3,11):=1;1n(4,2):=1;
1n(5,7):=1;In(6,12):=1;
bc:=mat((bl,b2,b3,0,O,O),(c1,c2,c3,bl,b2,b3),(O,O,O,c1,c2,c3));
d:=mat((1,O,v),(O,(1-v)/2,0),(v,O,1));
b:=bc*ln;
s:=tp(b)*d*b*pj*ye*h/(2*(I-v**2));
bl:=(y2-y3)/pj;b2:=(y3-y1)/pj;b3:=(y1-y2)/pj;
cl:=(x3-x2)/pj;c2:=(x1-x3)/pj;c3:=(x2-x1)/pj;
for i:=l: 15do<<a:=forj:=l: 15sums(i,j);writea>>;
for i:=l: 15do<<c:=forj:= 1:15sums(j,i);writec>>;
on fort;
off period;
off echo;
out "plane.ftn";
write " subroutine ske(xl,yl,x2,y2,x3,y3,s)";
write " dimension s(15,15)';
write" implicit real*8(a-h,o-z)";
write " pj=(x 1-x3)*(y2-y3)-(y l-y3)* (x2-x3)";
write ' ye=2.1" 1.Oe07';
write " v=0.29";
write " h=0.2";

for i:=l: 15 do for j:=l: 15 do
ifj>=i then write " s(",i,",",j,")=',s(i,j)
else write " s(",i,",",j,")=s(",j,",",i,")";
write " return";
write " end";
shut "plane.ftn";
bye;

C_Z_ZZZ_Z*ZZ_*_ZZZ*Z*Z*_:_ZZZZZZZZZ_ZSZZZ_ZZSZ**ZZZS_IISZZZZSZ

% Symbolic program to calculate the load vector for plate tension problem.
_ZZZZ*ZZ*ZZZZZgZZ*_cZZZZZZZZZZZZZIZZZZZ_,ZZZZIZZ_,Z_ZZZZZZ

matrix f( 1,2),sn(2,15),fn( 15,1);
army n(3),ff(15);

n( l):=s 1;n(2):=s2;n(3):=s3;
f:=mat((fl,f2));

for i:=l step 5 until 11 do <<sn(1,i):=n((i-l)t5+l);
sn(2,i+ 1):=n((i- 1)t5+ 1)>>;
fn:=tp(f*sn);
s2:=O;
s3:=l-sl;

for i:=l: 15do <<al:=int(fn(i,1),sl);a2:=sub(sl=l,al)-sub(sl=O,al);
fn(i,1):=a2*rl*h>>;

for i:=1;15 do ff(i):=fn(i,1);
on fort;
off echo;

off period;
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out "151oad.ftn";
write " subroutineIoad(x1,y1,x2,y2,x3,y3,f1,f2,f3,fe)";
write " implicit real*8(a-h,o-z)";
write " dimensionfe(15)";
write " rl=sqrt((x1-x3)**2+(y1-y3)*'2)";
write " h=0.2";
for i:=l: 15do write " fe(",i,")=",ff(i);
write " return";
write " end";
shut"151oad.ftn";
bye;

% REDUCEprogramto constructsubroutineto compute
% stressdistributionfor platetensionproblem.

matrix d(3,3 ), bc(3,6),fn(6,1 ),stre(3,1 );
array n(3);
n( 1):=s 1;n(2):=s2;n(3):=s3;

bc: =mat((b 1, b2,b3,0,0,0),(c 1,c2,c3 ,bl, b2,b3),(0,0,0,c 1,c2,c3));
d:=mat(( 1,0,v),(0,( 1-v)/2,0),(v,0,1));
operator u;
for i:=1:6 do fn(i,l):=u(i);
stre:=d* bc* fn* ye/( 1-v* *2);

b 1:=(y2-y3)/pj ;b2: =(y3-y 1)/pj ;b3: =(y 1-y2)/pj;
c 1:=(x3-x2)/pj ;c2:=(x 1-x3)/pj ;c3 :=(x2- x 1)/pj;
on fort;
off echo;

off period;
out "st.ftn";
write "
write "
write "
write "
write "
write "
for i:=1:3 do write "

write " return";
write " end";
shut "st.ftn";
bye;

subroutine stress(x 1,y 1,x2,y2,x3,y3,u,st)";
implicit real*8(a-h,o-z)";
dimension u(6),st(3)";
v=0.29";

pj=(x 1-x3)* (y2-y3)-(y 1-y3)* (x2-x3)";
ye=2.1 * 1.0e07";

st(",i,")=",stre(i, 1);

The resultant fortran subroutines obtained from the above programs to compute stiffness

matrix, load vector and stress distribution are presented as follows. Since the expression

of stiffness matrix is quite lengthy, only a part of it is showed. The interested

researchers may refer to the PH.D. thesis of Wen-Lang Tsai [51] for details.

SUBROUTINE SKE(X 1,Y 1,X2,Y2,X3,Y3,S)
IMPLICIT REAL*8(a-h,o-z)
DIMENSION S( 15,15)
pj=(x 1-:,c3)*(y2-y3)-(y l-y3)* (x2-_)
YE=2.1' 1.0E07
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V=0.29
H=0.2
s(1,1)=(H*YE*(V* X2"'2-2" V*X2*X3+V*X3**2-X2**2+2*X2*

• X3-X.3**2-2*Y2**2+4*Y2*Y3-2*Y3**2))/(4*PJ*(V**2-1))
s(1,2)=(H*YE*(V*X2*Y2-V*X2*Y3-V*X3*Y2+V*X3*Y3+X2,Y2_
• X2*Y3-X3*Y2+X3*Y3))/(4*PJ*(V**2-1))
s(1,3)=0
s(1,4)=0
s(1,5)=0
s(1,6)=-(H*YE*(V*X 1*X2-V*X 1*X3-V*X2*X3+V*X3**2-X 1*X2
• +X 1*X3+X2*X3-X3**2+2*Y2*Y3-2*Y2*y 1-2*Y3**2+2*Y3*Y 1)
• )/(4*PJ*(V**2-1))
s(1,7)=-(H*YE*(2* V*X 1*Y2-2' V*X 1*Y3+V*X2* Y3-V*X2*Y 1-2
• *V*X3*Y2+V*X3*Y3+V*X3*Y 1-X2*Y3+X2*YI+X3*Y3-X3*Y 1))
•/(4*PJ*(V**2-1))
s(1,8)=0
s(1,9)=0
s(1,1O)=0
s(1,11)=(H*YE*(V*X I*X2-V*X 1*X3-V*X2**2+V*X2*X3-X l'X2

• +X 1*X3+X2**2-X2*X3+2*Y2**2-2*Y2*Y3-2*Y2*y l+2*Y3*Y 1)
• )/(4*PJ*(V**2-1))
s(1,12)=(H*YE*(2' V*X 1*Y2-2" V*X 1*Y3-V*X2*Y 2+2' V*X2*Y3
• -V*X2*Y 1-V*X3*Y2+V*X.3*Y1-X2*Y2+X2*YI+X3*Y2-X3*Y I))
•/(4*PJ*(V**2-1))
s(1,13)=0
s(1,14)=0
s(1,15)=0
s(2,1)=s(1,2)
s(2,2)=(H*YE*(V*Y2**2-2*V*Y2*Y3+V*Y3**2-2*X2**2+4*X2
• *X3-2*X3**2-Y2**2+2*Y2*Y3-Y3**2))/(4*PJ*(V**2-1))
s(2,3)=0
s(2,4)=0
s(2,5)=0
s(2,6)=(H*YE*(V*X 1*Y2-V*X 1*Y3+2"V'X2* Y3-2"V*X2*Y 1-V*
• X3*Y2-V*X3*Y3+2*V*X3*Y 1-XI*Y2+XI*Y3+X3*Y2-X3*Y3))
•/(4*PJ*(V**2-1))
s(2,7)=(H*YE*(V*Y2*Y3-V*Y2*Y 1-V*Y3**2+V*Y3*Y l+2*X 1"
• X2-2*X l*X3-2*X2*X3+2*X3**2-Y2*Y3+Y2*Y l+Y3**2-Y3*Y 1))
•/(4*PJ*(V**2-1))
s(2,8)=0
s(2,9)=0
s(2,10)=0
s(2,11)=-(H*YE*(V*X 1*Y2-V*X 1*Y3+V*X2* Y2+V*X2*Y3-2* V*
• X2*Y 1-2*V*X3*Y2+2*V*X3*Y 1-XI*Y2+XI*Y3+X2*Y2-X2*Y3))
•/(4*PJ*(V**2-1))
s(2,12)=-(H*YE*(V*Y2**2-V*Y2*Y3-V*Y2*Y 1+V*Y3*Y l+2*X 1
• *X2-2*X l*X3-2*X2**2+2*X2*X3-Y2**2+Y2*Y3+Y2*y I-Y3*Y 1
• ))/(4*PJ*(V**2-1))

s(15,15)=0
return
end
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subroutine load(x 1,y I ,x2,y2,x3,y3,f 1, f2,fe)
IMPLICIT REAL*8(a-h,o-z)
dimension fe(15)
rl=sqrt((x3-x2)**2+(y3-y2)**2)
h=0.2

fe( 1)=0
fe(2)=O
fe(3)=0
fe(4)=0
fe(5)=0
fe(6)=(H* F 1* RL)/2
fe(7)=(H* F2*RL)/2
fe(8)=O
fe(9)=0
fe(10)=0
fe( 11)=(H* F1 * RL)/2
fe( 12)=(H* F2* RL)/2
fe( 13)=0
fe(14)=O
fe(15)=0
return
end

subroutine stress(x 1,y 1,x2,y2,x3,y3,u,st)
implicit real*8(a-h,o-z)
dimension u(6),st(3)
v=0.29

pj=(x l-x3)* (y2-y3)-(y l-y3)* (x2-x3)
YE=2.1 * 1.0E07

st( 1)=(Y E*(U(6)* V*X l-U(6)* V*X2-U(5)* V*X l+U(5)* V*X3+U
• (4)*V*X2-U(4)*V*X3+U(3)*Y2-U(3)*Y 1-U(2)*Y3+U(2)*Y I-
• U( 1)*Y2+U( 1)*Y3))/(PJ*(V**2-1))

st(2)=-(Y E*(U(6)*V*Y2-U(6)*V*Y 1-U(6)*Y2+U(6)*Y l-U(5)
• *V*Y3+U(5)*V*Y I+U(5)*Y3-U(5)*Y 1-U(4)*V*Y2+U(4)*V*Y3
• +U(4)*Y2-U(4)*Y3+U(3)*V*X l-U(3)* V*X2-U(3)*X l+U(3)*
• X2-U(2)* V_'X l+U(2)* V*X3+U(2)*X 1-U(2)*X3+U( 1)* V*X2-U(

1)* V*X3-U( 1)*X2+U( 1)*X3))/(2" PJ*(V**2-1))
st(3)=(Y E*(U(6)*X I-U(6)* X2-U(5)*X 1+U(5)*X3+U(4)* X2-U

• (4)*X3+U(3)*V*Y2-U(3)*V*Y 1-U(2)*V*Y3+U(2)* V_'y I-U(1)
• *V*Y2+U(1)*V*Y3))/(PJ*(V**2-1))
return
end

The stress distribution of plate under tension is plotted by PATRAN in Figure 6.2. The

stress concentration is visible in the top of the hole. One interesting phenomenon that

should be mentioned here is that the stress at the middle top of the plate is less than the

applied load. This is contributed by the bending effect which produces the compression

in the top fiber of the plate.
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2. Four-edgesimply supportedplatebendingwith uniform transverseload [seeFigure
6.3] --- In this case,the membranecomponentof stiffnessmatrix is neglected.The
REDUCE programto makethe bendingcomponentof stiffnessmatrix is shownas
follows •

%REDUCEprogramfor constructingplatebendingstiffnessmatrix

arrayn(9);

matrix sn(3,9),bc(2,3),bn(2,9),ssn(6,9),bcbc(3,6),bssn(3,9),d(3,3),ske(9,9),s(9,9);
n(1):=s1+s1*s2*(sl-s2)+s1*s3*(s1-s3);
n(2):=pj*(c3*(sI **2"s2+s1*s2*s3/2)-c2"(s1**2"s3+s1*s2*s3/2));
n(3):=pj*(b2*(s1.**2' s3+s1*s2*s3/2)-b3*(s1** 2' s2+s1*s2*s3/2));
n(4):=s2+s2*s3*(s2-s3)+s2*s1*(s2-s1);
n(5):=pj*(c1*(s2**2' s3+s1*s2*s3/2)-c3"(s2**2*s 1+sI *s2*s3/2));
n(6):=pj*(b3*(s2**2* s1+sI *s2*s3/2)-b1*(s2**2*s3+sI *s2*s3/2));
n(7):=s3+s3*s1*(s3-s1)+s3*s2*(s3-s2);
n(8):=pj*(c2" (s3* *2*s1+s1*s2*s3/2)-cI *(s3**2"s2+s1*s2*s3/2));
n(9):=PJ*(bl*(s3**2*s2+s l*s2*s3/2)-b2*(s3**2*s1+sl.s2,s3/2));
for i:= 1:9do<<sn(1,i):=df(n(i),s1);sn(2,i):=df(n(i),s2);

sn(3,i):=df(n(i),s3)>>;
bc:=mat((b1,b2,b3),(cI ,c2,c3));
bn:=bc*sn;
for i:=1:9do <<ssn(1,i):=df(bn(1,i),s1);ssn(2,i):=df(bn(1,i),s2);

ssn(3,i):=df(bn(l,i),s3);ssn(4,i):=df(bn(2,i),s1);
ssn(5,i):=df(bn(2,i),s2);ssn(6,i):=df(bn(2,i),s3)>>;

s3:=l-sl-s2;
bcbc:=mat((bl,b2,b3,0,0,0),(c1,c2,c3,b1,b2,b3),(0,0,0,c1,c2,c3));
bssn:=bcbc*ssn;
D:=MAT((1,0,V),(0,(I_V)/2,0),(V,0,1));
ske:=tp(bssn)*d*bssn*pj$
for i:=1:9do forj:=l:9 do
ifj>=i then<<tem:=int(ske(i,j),s2);
tem1:=sub(s2=1-s1,tem)-sub(s2=O,tem);
tem3:=int(tem1,s1);
s(i,j):=(sub(sl=l,tem3)-sub(sl=0,tem3))*ye*h,_,3/(12,(l_ v**2))>>
elses(i,j)=s(j,i);
b1:=(y2-y3)/pj;b2:=(y3-y1)/pj;b3:--(y1-y2)/pj;
c1:=(x3-x2)/pj;c2:=(x1-x3)/pj;c3:=(x2-x 1)/pj;
on fort;
off echo;
off period;
CARDNO!*:=IO;
out "z.ftn";
WRITE "
WRITE "
WRITE "
WRITE "
WRITE "
WRITE "
WRITE "

SUBROUTINE SKE1(X1,Y1,X2,Y2,X3,Y3,S)";
IMPLICIT REAL*8(A-H,O-Z)";
DIMENSIONS(2,9)";
pj=(x1-x3)*(y2-y3)-(y1-y3)*(x2-x3)";
YE=2.1' 1.0E07";
V=0.29";
H=0.2";

FORI:=1:2DO FORJ:=l:9 DO
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IF j>=i THEN WRITE " S(",I,",",J,")=",S(I,J)
ELSE WRITE " S(",I ,"," ,J,")=S(",J," ,",[ ,")" ,

WRITE " RETURN";
WRITE " END";
WRITE " SUBROUTINE SKE2(X1,Y 1,X2,Y2,X3,Y3,S)";
WRITE" IMPLICIT REAL*8(A-H,O-Z)";
WRITE " DIMENSION S(4,9),s 1(2,9)";

WRITE " pj=(x 1-x3)*(y2-y3)-(y 1-y3)*(x2-x_3)";
WRITE " YE=2.1' 1.0E07";
WRITE" V=0.29";
WRITE" H=0.2";
WRITE " CALL SKEI(XI,Y 1,X2,Y2,X3,Y3,S1)";
WRITE " DO 20 I=1,2";
WRITE" DO 20 J= 1,9";
WRITE" 20 S(I,J)=SI(I,J)";
FOR I:=3:4 DO FOR J:=l:9 DO

IFj>=i THEN WRITE" S(",I,",",J,")=",S(I,J)
ELSE WRITE " S(",I,",",J,")=S(",J,",",I,")";

WRITE " RETURN";
WRITE" END";

WRITE " SUBROUTINE SKE3(X1,Y I,X2,Y2,X3,Y3,S)";
WRITE" IMPLICIT REAL*8(A-H,O-Z)";
WRITE " DIMENSION S(6,9),s2(4,9)";
WRITE " pj=(x 1-x3)*(y2-y3)-(y 1-y3)*(x2-x3)";
WRITE " YE=2.1" 1.0E07";
WRITE" V=0.29";
WRITE " H=0.2";

WRITE " CALL SKE2(X1,Y1,X2,Y2,X3,Y3,S2)";
WRITE " DO 20 I=1,4";
WRITE " DO 20 J=l,9";
WRITE " 20 S(I,J)=S2(I,J)";
FOR I:=5:6 DO FOR J:=l:9 DO

IFj>=i THEN WRITE " S(",I,",",J,")=",S(I,J)
ELSE WRITE " S(",I,",",J,")=S(",J,",",I,")";

WRITE " RETURN";
WRITE " END";

WRITE " SUBROUTINE SKE(XI,YI,X2,Y2,X3,Y3,S)";
WRITE" IMPLICIT REAL*8(A-H,O-Z)";
WRITE " DIMENSION S(9,9),s3(6,9)";

WRITE" pj=(x 1-x3)*(y2-y3)-(y 1-y3)*(x2-x3)";
WRITE" YE=2.1" 1.0E07";
WRITE" V=0.29";
WRITE" H=0.2";

WRITE" CALL SKE3(X 1,Y I,X2,Y2,X3,Y3,S3)";
WRITE" DO 20 I=1,6";
WRITE" DO 20 J= 1,9";
WRITE" 20 S(I,J)=S3(I,J)";
FOR I:=7:9 DO FOR J:=l:9 DO

IF j>=i THEN WRITE" S(",I,",",J,")=",S(I,J)
ELSE WRITE " S(",I,",",J,")=S(",J,",",I,")";

WRITE" RETURN";
WRITE" END";
SHUT "z.ftn";
bye;
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The resultant fortran subroutineis too large (around 135 pages) to be
completelyhere.Thefollowingis onlyasmallportionof it.

SUBROUTINESKE1(X 1,Y1,X2,Y2,X3,Y3,S)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION S(1,9)
pj=(x1-x3)*(y2-y3)-(yl-y3)* (x2-x3)
YE=2.1' 1.0E07
V=0.29
H=0.2
ANS5=-4*Y3*Y 1"'3+2"Y 1"'4
ANS4=-4*X2*"2' Y2*Y 1+8'X2'* 2"Y3* '2+2' X2* *2*Y 1**2-16*
X2*X.3"3-16*X2*X3*Y2**2+32*X2*X3*Y2* y3.16*X2*X3* Y3
• *2+5*X3**4+8*X3**2*Y 2"'2-16*X3**2*Y2*Y3+ 10"X3"'2"
Y3**2-4*X3**2*Y3*y i+2*X3**2*Y 1"2+5'Y2"4-16'Y2"'3"
Y3-4*Y2**3*Y l+24*Y2**2*Y3**2+6*Y2**2*y 1"'2-16*Y2*Y3
• *3-4*Y2*Y l**3+5*Y3**4-4*Y3**3*y l+6*Y3**2*Y 1"'2+
ANS5
ANS3=2*X1"'4-4"X l**3*X2-4*X l**3*X3+6*X 1"'2"X2"'2+6"
X 1** 2"X3** 2+2"X 1*'2' Y2"* 2-4"X 1*"2' Y2*Y 1+2*X 1*'2'Y3
• *2-4' X 1**2*Y3*Y 1+4*X 1**2*Y 1**2-4'X 1*X2"'3-4" X 1*X2*
Y2* *2+8'X 1*X2*Y2' Y 1-4*X 1*X2*Y 1**2-4"X 1*X3* "3-4" X 1*
X3*Y3* *2+8"X1*X3*Y3* Y 1-4*X1*X3*Y 1**2+5"X2"'4-16"X2
• *3*X3+24*X2** 2"X3"2+ 10*X2**2*Y2**2-16*X2**2*Y2*Y3
+ANS4

ANS2=H**3*YE*ANS3
ANSI=ANS2/(18*PJ**3*(V**2-1))
S(1,1)=-ANS1

presented
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Figure 6.3 • Physical configuration of plate bending problem

The load vector in this case is for a uniform transverse pressure only. The REDUCE

program and its output are shown as follows"

************************************************

% REDUCE program to construct the load vector
% for plate bending problem.

army n(9),fe(9);

n(1):=s l+sl*s2*(s 1-s2)+s l*s3*(sl-s3);

n(2):=pj*(c3*(sl**2*s2+s l*s2*s3/2)-c2*(sl**2*s3+sl*s2,s3/2));
n(3):=pj*(b2*(s l**2*s3+s l*s2*s3/2)-b3*(s l**2*s2+s l*s2*s3/2));
n(4):=s2+s2* s3*(s2-s3)+s2*s l*(s2-s 1);

n(5):=Pj*(c l*(s2**2*s3+s l*s2*s3/2)-c3*(s2**2*s l+s I *s2*s3/2));
n(6):=Pj*(b3*(s2**2*s l+s l*s2*s3/2)-b l*(s2**2*s3+s I *s2*s3/2));
n(7):=s3+s3*sl *(s3-s 1)+s3*s2* (s3-s2);

n(8):=Pj*(c2*(s3**2*s l+s l*s2*s3/2)-c l*(s3**2*s2+s l*s2*s3/2));
n(9):=pj*(bl*(s3**2*s2+s l*s2*s3/2)-b2*(s3**2*s l+s l*s2*s3/2));
s3:=l-sl-s2;

for i:= 1:9 do <<tern 1:=int(n(i),s2);

tem2: =sub(s2= 1-s 1,tern 1)-sub(s2=0,tem 1);
tem3:=int(tem2,sl);

fe(i):=(sub(s 1= 1,tem3)-sub(s l=0,tem3))*pj* f3;
write i,fe(i)>>;

b 1:=(y2-y3)/pj ;b2: =(y3-y 1)/pj ;b3: =(y 1-y2)/pj;
c 1 :=(x3-x2)/pj ;c2: =(x 1-x3)/pj ;c3:=(x2-x 1)/pj;
off period;
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off echo;
ON FORT;

out "zload.ftn";

write " SUBROUTINE LOAD(X1,Y 1,X2,Y2,X3,Y3,F3,FE),,.
write " IMPLICIT REAL*8(A-H,O-Z),,;
WRITE " DIMENSION FE(9)";

write " PJ=(x 1-x3)*(y2-y3)-(y 1-y3)*(x2_x3),,;
N Pt tl ftFOR I:=1:9 DO WRITE FE( ,I, )= ,FE(I);

WRITE " RETURN";
write " end";
shut "zload.ftn";
bye;

SUBROUTINE LOAD(X 1,Y 1,X2,Y2,X3,Y3,F3,FE)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION FE(9)

pj=(x 1-x3)*(y2-y3)-(y 1-y3)* (x2- x3)
FE(1)=(PJ*F3)/6

FE(2)=-(PJ* F3*(2*X 1-X2-X3))/48
FE(3)=(PJ*F3*(Y2+Y3_2,y 1))/48
FE(4)=(PJ* F3)/6

FE(5)=(PJ* F3* (X 1-2*X2+X3))/48
FE(6)=-(PJ*F3*(2*Y2_Y3_y 1))/48
FE(7)=(PJ*F3)/6

FE(8)=(PJ* F3*(X 1+X2-2*X3))/48
FE(9)=(PJ*F3*(Y2-2*Y3+y I))/48
RETURN
end

The deformed shape is shown in Figure 6.4 and the stress distribution pattern is in

Figure 6.5. In addition, three different sizes of mesh are tested to investigate the

convergence of solution. They are shown in Figure 6.6. The convergence trend is

presented in Figure 6.7 which is the plot of error vs. element mesh size.

3. Four-edge clamped plate bending under uniform load --- the only difference between this

case and the last case is the boundary constraints. The extra slope constraints are

enforced in the edges in this case. Therefore it is expected that the solution will be stiffer

than that of the simply-supported case. The deformed shape is shown in Figure 6.8. The

stiffer phenomenon is visible by comparing Figures 6.4 and 6.8.
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Figure 6.6" Three different sizes of mesh for testing the convergence
of solution of plate bending

$

0

3

n_m_ •

Figure 6.7 : Convergence of plate bending solution

4

138



!

0'!

£',,I

E_o

("q I= c7'

°,"_

,c:: .

o

I

N

L_

L--

0

°.

O0

139



6.5 References

[1] F. I. Niordson, "Shell theory", North-Holland, 1985.

[2] I. S. Sokolnikoff, 'Tensor analysis", John Wiley & Sons, 1964.

[3] M. Dikmen, 'Theory of thin elastic shells", Pitman,1982.

[4] O. C. Zienkiewicz, "The finite element method", McGraw-Hill, 1977.

[5] Eric Reissner, "/'he effect of transverse shear deformation on the bending of elastic

plates", J. of applied mechanics, pp. A69-A77, June, 1945.

[6] R. D. Mindlin, "Influence of rotatory inertia and shear on flexural motions of isotropic,

elastic plates", J. of applied mechanics, pp 31-38, March 1951.

[7] B. Budiansky, "Notes on nonlinear shell theory", J. of applied mechanics, pp 393-

401, June 1968.

[8] O. C. Zienkiewicz, R. L. Taylor and J. M. Too, "Reduced integration technique in

general analysis of plates and shells", Int. J. for nume. methods in engi., Vol.3, pp

275-290, 1971.

[9] O. C. Zienkiewicz, C. Parekh, I. P. King, "arch dams analysed by a linear finite

element shell solution program", proc. of symposium, pp 19-22, London, March

1968.

[10] R. W. Clough and C. P. Johnson, "A finite element approximation for the analysis of

thin shells", Int. J. solids structures, vol. 4, pp 43-60, 1967.

[11] Jean-Louis Batoz and M. B. Tahar, "Evaluation of a new quadrilateral thin plate

bending element", Int. J. for numerical methods in engineering, vol. 18, pp 1655-

1677, 1982.

[12] J. L. Batoz, "An explicit formulation for an efficient triangular plate-bending

element", Int. J. for numerical methods in Engi., vol. 18, pp 1077-1089, 1982.

[13] J. L. Batoz, K. J. Bathe, Lee-Wing Ho, "A study of three-n_e triangular plate

bending elements", Int. J. for numerical methods in Engi., Vol. 15, pp 1771-1812,

1980.

140



[14] B. M. Irons and A. Razzaque, "Shape function formulations for elements other than

displacement models", proc. of conference at Uni. of Southampton, pp 4/59-4/72,

sep. 1972.

[15] A. B. sabir and A. C. Lock, "A curved, cylindrical shell, finite element", Int. 3.

mech. Sci., voi. 14, pp 125-135, 1972.

[16] G. P. Bazeley, Y. K. Cheung, B. M. Irons, O. C. Zienkiewicz, 'Triangular elements

in plate bending - conforming and non-conforming solutions", pp 547-576, AFFDL-

TR-66-80.

[17] D. G. Ashwell and A. B. Sabir, "A new cylindrical shell finite element based on

simple independent strain functions", Int. J. mech. Sci., Voi. 14, pp 171-183, 1972.

[18] J. D. Chieslar and A. Ghali, "Solid to shell element geometric transformation",

Computers & Structures, Vol. 25, No. 3, pp 451-455, 1987.

[19] J. D. Chieslar and A. Ghali, "A hybrid strain technique for finite element analysis of

plates and shells", Computers & Structures, Vol. 24, No. 5, pp. 749-765, 1986.

[20] W. J. Sutcliffe and J. Mistry, "Shell segmentation requirements for numerical

integration solutions", Computer methods in applied mechanics and engineenng, Voi.

7, pp 179-190, 1976.

[21] Y. Yokoo and H. Matsunaga, "A general nonlinear theory of elastic shells", Int. J.

solids Structures, vol. 10, pp 261-274, 1974.

[22] F. Par i's and S. De Leo'n, "Boundary element method applied to the analysis of

thin plates", Computer & Structures, Vol. 25, No. 2, pp 225-233, 1987.

[23] F'. C. Shen and J. G. Wan, "Vibration analysis of flat shells by using B spline

functions", Computer & Structures, vol. 25, No. 1, pp 1-10, 1987.

[24] H. C. Huang, "Implementation of assumed strain degenerated shell elements",

Computers & Structures, vol. 25, No. 1, pp 147-155, 1987.

[25] Kamal A. Meroueh, "On a formulation of a nonlinear theory of plates and shells with

applications", Computers & Structures, Vol. 24, No. 5, pp 691-705, 1986.

141



[26] Kolbein Bell, "A refined triangular plate bending finite element", Int. J. for numerical

methods in engi. Vol. l, pp 101-122, 1969.

[27] N. Katz, A. G. Peano, M. P. Rossow, "Nodal variables for complete conforming

finite elements of arbitrary polynomial order", Comp. and Maths with Appls., Vol. 4,

pp 85-112, 1978.

[28] A. Peano, "Hierarchies of conforming finite elements for plane elasticity and plate

bending", Comp. & Maths with Appls., Vol. 2, pp 211-224, 1976.

[29] A. Peano, "Conforming approximations for Kirchhoff plates and shells", Int. J. for

nume. methods in engi., vol. 14, pp 1273-1291, 1979.

[30] I. M. Smith,"A finite element analysis for 'moderated-thick' rectangular plates in

bending", Int. J. Mech. Sci., Vol. 10, pp 563-570, 1968.

[31] I. M. Smith and W. Duncan, 'The effectiveness of excessive nodal continuities in the

finite element analysis of thin rectangular and skew plates in bending", Int. J. for

numerical methods in engi., Vol. 2, pp 253-257, 1970.

[32] B. F. De Veubeke, "A conforming finite element for plate bending", Int. J. solids

Structures, Vol. 4, pp 95-108, 1968.

[33] G. A. Butlin and R. Ford, "A compatible triangular plate bending finite element",

Int. J. Solids Structures, Vol. 6, pp 323-332, 1970.

[34] T. J. Hughes, "A simple and efficient finite element for plate bending", Int. J. for

nume. methods, in engi., Voi. 11, pp 1529-1543, 1977.

[35] Isaac Fried, "Shear in C O and C 1 bending finite elements", Int. J. Solids Structures,

Voi. 9, pp 449-460, 1973.

[36] B. R. Somashekar, G. Prathap, C. R. Baru, "A field- consistent, four-noded,

laminated, Anisotropic plate/shell element", Computer & Structures, Vol. 25, No. 3,

pp 345-353, 1987.

[37] A. Razzaque, "Program for triangular bending elements with derivative smoothing",

Int. J. for nume. methods in engi., Vol. 6, pp 333-343, 1973.

142



[38] F. K. Bogner, R. L. Fox, L. A. Schmit, Jr., "The generation of inter-element-

compatible stiffness and mass matrices by the use of interpolation formulas", pp 397-

423, AFFDL-TR-66-80.

[39] W. Weaver & P. R. Johnston, "Finite elements for structural analysis", prentice-

Hall, 1984.

[40] S. Klein, "A study of the matrix displacement method as applied to shells of

revolution", pp 275-298, AFFDL-TR-66-80.

[41] P. K. Mishra and S. S. Dey, "discrete energy method for the analysis of cylindrical

shells", Computer & Structures, vol 27, No.6, pp 753-762,1987.

[42] J. H. Argyris, De, Fraes, "Matrix displacement analysis of anisotropic shells by

triangular elements", J. of the royal aeronautical society, Vol. 68, pp 801-805, Nov.

1965.

[43] N. Kikuchi, "Finite element methods in mechanics", Cambridge,1986.

[44] A. E. Green, P. M. Nagdi & W. L. Wainwright, "A general theory of a cosserat

surface", Archives of rational mechanics and analysis,p.287,voi. 20, 1965.

[45] S. Timoshenko & S.Woinowsky-Krieger, "Theory of plates and shells", 2nd

edition,McGraw-Hill, 1959.

[46] D. J. Dawe, "Rigid-body motions and strain-displacement equations of curved shell

finite elements", Int. J. mech. sci., Vol. 14, pp 569-578, 1972.

[47] G. R. Cowper, G. M. Lindberg, M. D. Olson, "A shallow shell finite element of

triangular shape", Int. J. Solids Structures, Vol. 6, pp 1133-1156, 1970.

[48] G. Cantin, "Rigid body motions in curved finite elements", AIAA Journal, Vol. 8,

No. 7, pp 1252-1255, 1970.

[49] W. L. Tsai, "I'he investigations and experimentations on symbolic and algebraic

manipulation software--REDUCE", unpublished, Uni. of Michigan, Aug., 1987

[50] R. S. Millman, G. D. Parker, "Element of differential geometry, Prentice-Hall, 1977.

143



[51] W.L.Tsai, " Applications of symbohc and algebraic manipulation software in solving

applied mechanics problems", Ph.D. thesis, Dept. ol mechanical and applied

mechanics, The University of Michigan, Ann Arbor, Dec. 1989.

L44



CHAPTER VII

CONCLUSIONS

7.1 Introduction

The topics discussed in this chapter include the advantages of using symbolic and

algebraic manipulation, the difficulties existing in running symbolic and algebraic software, the

SAM in education, contributions, and the prospect of future development and application.

Simple examples will be presented to illustrate the points where necessary.

7.2 Advantages of symbolic and algebraic manipulation

There are many advantages of application of symbolic and algebraic manipulation. They
can be classified as follows •

1. Tireless power--- Together with human intelligence, the tireless capability in

manipulating symbols and numbers has made SAM an indispensable tool in modern

computational community. It has created the potential to challenge both previously

intractable problems and new sophisticated formulae. Due to this advantage, the

analytical work is pushed forward.

2. Accuracy --- A solution obtained by symbolic and algebraic manipulation is always

exact. There is no round-off error accumulation.

.

Reliability --- The resultant expressions obtained by symbolic and algebraic manipulation

will be correct if the input information is right. In addition, the capability of automatic

code generation eliminates any typographic errors and substantially reduces the time in

debugging the programs.

=

Efficiency --- This is a new advantage found in this research. The symbolic template in

nonlinear numerical analysis can significantly improve the efficiency of program

execution. This advantage is believed to be a crucial solution in the future for fields in
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whichthedevelopmenttime playsanimportantrole.Forexample,therealtimecontrol
will beoneof them.

7.3 Internal swelling and mathematical limitations

As mentioned in the last chapters, there are some difficulties existing in the symbolic

and algebraic manipulation. The followings are the detail discussions :

. Memory capacity limitation --- A large amount of memory space is required for symbolic

and algebraic manipulation. This is one of its fundamental limitations. The amount of

memory space needed for running a symbolic and algebraic manipulator varies a lot from

one system (hardware and software) to another. Different software systems need

different sizes of memory space, and different hardware systems may provide different

amounts of memory space for the same software. Even the same software running in the

same hardware system sometimes may need different memory spaces depending on

whether external packages are connected or not. For example, 834560 bytes RAM

(about 815 K bytes) are currently provided (Fa11,1989) for running REDUCE in the

Michigan Terminal System (MTS) when it is invoked. If integration performance is

involved in the computation, the external integration package should be manually

included and the memory space will be extended to 1048560 bytes (about 1 mega bytes).

The total memory space that MTS can provide during the computation is up to seven

mega bytes. On the other hand, three mega bytes are provided to run REDUCE in an

Apollo Domain workstation at the Computer Aided Engineering Network (CAEN) of

The University of Michigan. Unlike MTS, this space can be automatically extended up

to six mega bytes during execution if necessary. When the space requirement is beyond

the provisions of hardware, execution will be aborted automatically. Therefore it is

recommended that the symbolic and algebraic manipulator be implemented on a machine

with at least one mega bytes RAM capacity to guarantee a safe execution.

To demonstrate the mechanism of internal swell in symbolic and algebraic manipulation,

an example is given to calculate the factorial of a number. Mathematically, a factorial is

deft ned as :

1n if n _.0;n!- (n - 1)! otherwise. (7.1)

The LISP function for this problem is as follows :
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(defunfactorial(n)

(if (= nO)

1

(* n (factorial(1- n)))))

When thefunctionis called to calculatethefactorialof four, thebuilding processwill
occurfirst andthenthecollapsingprocessfollows9.

(factorial4) -> (* 4 (factorial3))

-> (* 4 (* 3 (factorial2)))

-> (* 4 (* 3 (* 2(factorial1))))

-> (* ,4 (* 3 (* 2 (* 1 (factorial 0)))))

-> ('4('3('2(* 11))))

-> ('4('3('21)))

-> ('4('32))

-> (* 4 6)

-> 24

The internal swelling phenomenon occurs during the process of building. It is

unquestionable that this phenomenon will become more serious if a larger number is

given. Moreover if input number is negative, the recursive process will theoretically

continue infinitely. Of course, the execution will be aborted when the provided space is

used up.

2. Mathematical limitation --- Strictly speaking, a mathematical limitation should not be

completely classified as limitation of symbolic and algebraic manipulation. For example,

the analytical solution for the general 5th polynomial is proven to be non-existent.

9 In some cases, the collapsing process may be impossible and the swelling phenomenon

will last to the end of execution if it is not beyond the capacity of the hardware system.
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Thereforeit is alsoimpossiblefor symbolicandalgebraicmanipulationto solve this

problem.However,in additionto theabovementionedexample,difficulties in solving
mathematicalequationswhoseanalyticalsolutionsexistaresometimesencountered.The

occurrenceof this phenomenonis quite systemdependent.In general,mostof such

occurrencesareencounteredduring integrationand equationsolving (algebraicand
differentialequation).

7.4 Symbolic and algebraic mafiipulation and education

The impact of SAM to science and engineering is significant. There are many

publications of its application on celestial mechanics, relativity theory, and fluid mechanics.

Compared to such successful applications, the response from educational community is far

behind. So far, schools which officially include symbolic and algebraic manipulation in the

content of courses include Cornell University, The University of Pennsylvania, and The

University of Michigan. At Cornell University, MACSYMA was the first system introduced

into the graduate-level course, in the winter of 1983. It was not until the fall of 1984 that

Professor Richard Rand introduced the muMATH system into the sophomore engineering

mathematics course. Unlike the MACSYMA system which ran on the mainframe, the

muMATH system was implemented on IBM-XT and AT. At The University of Pennsylvania,

Professor H. H. Bau employed MACSYMA in the instruction of approximate analyses. At The

University of Michigan, Professor Noboru Kikuchi has used REDUCE to facilitate courses of

finite element methods and applied mathematics since 1985. The other system,

MATHEMATICA, was also implemented into the Macintosh II in the computational laboratory

by Professor Kikuchi around 1988. Others such as Professor P. Papalambros and Professor

R. Scott also used REDUCE in the courses on optimal design and finite element method.

The introduction of symbolic and algebraic manipulation into the education field should

certainly be encouraged. So far, some critic views have been reported by students at The

University of Michigan. They are :

1. Since there is no introductory course in symbolic and algebraic manipulation, students

always struggle in learning the symbolic and algebraic manipulator itself rather than its

application to the subject.

2. Most of manuals of symbolic and algebraic manipulators, such as REDUCE and

MACSYMA, are unfriendly to the users. It is difficult for new users to understand the

new terminologies in such a short time.
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, There is no appropriate textbook to facilitate to teach symbolic and algebraic

manipulation and its application l0 . Unlike numerical analysis, the amounts of symbolic

and algebraic manipulation results are not predictable. Therefore if assignment is not

carefully designed, it could turn out just as simple as a symbol (say '0') or several

hundred pages of outputs or nothing at all due to the internal swelling problem.

4. Qualified instructors are not easily found.

. The software may not be fully operational. For instance, the MACSYMA system at The

University of Michigan has just a half of its full capabilities. It is not easy to use because

some functions cannot be found even when they are listed in the manual. The

MATHEMATICA system is only implemented in some specific offices and is not yet

available for public use.

In order to overcome these problems, some proposals are suggested as follows •

, The education of symbolic and algebraic manipulation should start from the early

undergraduate period. It is recommended that the existing "Numerical analysis" course

be revised into "Numerical analysis and symbolic manipulation". The concept of

symbolic manipulation, the use of available software, and the complementarity between

symbolic manipulation and numerical analysis should be taught in the course.

2. It is urgent to design a textbook for such a new course. The existing manuals need be

revised for easy accessibility.

3. The software systems should be rechecked and made available to the public.

7.5 Contributions of this study

The study presented in this report is believed to have made three original contributions

to applied mechanics and symbolic manipulation. They are •

A). To applied mechanics"

1. Before this study, all of the advantages from the applications of symbolic and algebraic

manipulation were either in handling lengthy formulae, or in increasing the accuracy of

solution. In addition, this report points out for the first time a new advantage in

10 The one written by Gerhand Rayna is rather an experimental book of REDUCE than an
application of REDUCE in applied mechanics.
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improvingtheefficiencyof theexecutionof anumericalprogram.It isbelievedthatthis

advantagewill becrucial in suchapplicationsthat the developmenttime plays an
importantrole.Forinstance,if thetemplateis preparedin symbolicform beforehandand

implementedin a chip, the data receivedby a heat-seekingmissile can simply be
substitutedinto thetemplate.Theresponsetimewill besubstantiallyshortened.

1 The closed-form solution of a stiffness matrix of a 4-node quadrilateral isoparametric

element was not available before. This dissertation presents the first analytical solutions

of it. The contributions to the finite element analysis by this breakthrough are multifolds.

First, the integration error is eliminated and the solutions are more accurate. Secondly,

the closed-form solution can be automatically coded into a fortran subroutine. This

allows the element stiffness matrix to be obtained by simple substitution of nodal

coordinates. Of course, the fortran programming is simplified and the assemblage of the

global stiffness matrix is expedited.

B). To Symbolic and algebraic manipulation •

. Although the difficulties of the internal swelling problem and mathematical limitation

were well known in the SAM field, no one has given the remedy for it. This report

proposes a sysmatic pre-treatment method to avoid these difficulties and then

successfully applies it to solve the problems.

7.6 Prospects and continuations of this research

As the criterion of the quality of results (in both industry and academia) becomes more

and more strict, it is expected that more and more sophisticated formulations will be produced.

Some expectations of future trends are as follows •

o The design trend of symbolic and algebraic systems will continuously go towards

smaller, more convenient packages for personal computers or even calculators.

However, the mainframe SAM system will still co-exist to process large-expressions.

. Applications of SAM in industry are scare at this time. However, this situation will

change gradually after the teaching of symbolic and algebraic manipulation is actually

implemented in schools.
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, The relationship between numerical analysis and symbolic manipulation will be

smoother in the future. The switch from symbolic manipulation to numerical analysis (or

vice versa) is expected to be automatic eventually

4. The gap between theoretical analysis and computational experiments will be smaller and

smaller.

, The reconsideration of every problem, equation, and formulation will become necessary.

Regardless of whether they have already been solved or not. The solved problem can be

used to check the correctness of solutions by SAM. The unsolved problem might then

become solvable with the employment of SAM.

6. The inclusion of higher order terms for applied mechanics problems will become popular

due to the availability of SAM systems.

, To debug the symbolic program and to check the correctness of results are the important

associated tasks of symbolic and algebraic manipulation. It is expected that the self

debugging function of symbolic manipulators will be developed soon. A technique for

the sysmatic checking of results from symbolic and algebraic manipulation should be

available in the future.

The following three topics are closely relative to this study, and should be continued in

future research. They are :

1. Extension of methodology in constructing a stiffness matrix for 2-D isoparametrical

quadrilateral element to a 3-D problem.
!

a o

--'7_ ---)
2. Inclusion of the higher derivative term of 0t, r in Equation (6.23) to Equation (6.25).

This was neglected in the original formulation by Lee and Kobayashi and in this thesis.

3. Extension of methodology presented in section 7.3 to solve the general shell problem.
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APPENDIX A

Proof of Equation (5.12)

V

Given: ff(17,)--m*g *_t-

Prove: ff(17 ). 17;-ff(17_). 17_ >0

Proof : Let m*g =1 for simplicity,

/_ mF(17r)*V'_--ff(17;) ° _1¢;

vr v;t-- v;t )

There are three cases for discussions •

Case 1 • when V _ > 0 ,equation (A. 1) will be

Z0' when V, _00, when V, >0

Case 2" when V _ - 0, equality is hold.

Case 3 • when V _ < 0, equation (A. 1) will be

V, {>0, when V, aOF - V'(- 1-]--_), 0, when V, <0

Therefore, ff(fr ). 17;-ff(17_). 17_ a O is proven

(A. 1)

(A. 2)

(A .3)
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APPENDIX B

Proof of Equation (5.16)

Given : f(17) ._m *g *[_t _

Prove" /_:lf.. dfr - _,y. d_ r

0 0

:r(e,) .(_',- _',) (B. _)

Proof : Let m*g =1 for simplicity,

0 0

_/v, >o- •_',--Iv:l,

If V, <0=_ " • df r, - V

f0 gt~ t" - - sign ( V , )dV ,-_dV, • :1

_'_r. _',-- Iv,I

fl_'lf • d_',- Iv,I

There are four cases for discussions"

1. V_ >O,V, >0 case"

Left side of (B.1)=- Iv:l+Iv,I--V;+V

V,

- - ]-_V7 - V,)=fight side of (B.1)

2. V_ > 0,V, < 0 case.

(B .2)

(B.3)

(B .4)

Leftsideof (B.1)=IV;l_ Iv,I- v; +v,

•¢ - ]_( V," - V, ) =right side of (B. 1)

3. V_ <O,V, > 0 case •

Left side°f(B'l)=-Iv:l + Iv,I- v: +v
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V •

.:- V_' + V, -- ]_(V_ -V,)=right side of(B.1)

4. V_ <0.V, <0 case"

Left side of Iv:I-Iv,I- - v: +v

V,
--(V_ - V,) =-( - rw--r)(V" - V_)

IV,I

=-1*(right side of (B. 1)) (B.5)

case 4.

Equation (B.5) implies that equality is hold and both sides of (B. 1) are zero for

Therefore equation (B. 1) is proven.
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